微型超級電容器(micro-supercapacitors,MSCs)由於其體積小、重量輕、極高的充電放電速率和功率密度以及高彎折性,被視為一種微型儲能元件的選擇,以滿足可穿戴電子和高密度整合晶片上日益增長的需求。然而,現今MSCs的所面臨的關鍵挑戰是低能量密度的限制及其複雜、高成本且耗時的製作過程。 本研究展示一種全網版印刷式的微電容製作方法,通過電化學剝離石墨烯和長單壁碳納米管之複合電極,製造全固態(包括電解質)的軟性微電容。其中該方法顯示了一種簡單、快速且可大面積量產的途徑,以用於製造和組裝具有成本效益和高產量的微電容器。 實驗結果顯示本實驗之微電容裝置具有高的單位面積電容7.7 mF/cm2與單位體積電容77.3 F / cm3,並且在15000次循環後仍保持> 99%的優異循環穩定性,這歸因於石墨烯與奈米碳管之複合電極所提供的高擴散路徑和促進離子傳輸能力。在能量和功率密度分別為10.7 mWh / cm3和3.17 W / cm3。此外,當彎曲程度達到0.5mm的曲率半徑時,電容幾乎無劣化,顯示優異的機械柔韌性和工作穩定性。 此外,整體元件的總電荷儲存量可以透過活性材料的垂直疊層的方式來作擴充,而輸出電壓和電流則可以通過串聯和並聯多個MSC元件的設計來提升,以滿足各種應用上的所需。最重要的是,這項工作提供了一種具擴展性且經濟效益的方法來生產高能量密度的固態可撓式微電容,為未來的可穿戴設備開展新的方向。 ;Microsupercapacitors (MSCs) is an alternative power source that promises to fulfill the increasing demand for wearable and on-chip electronics due to the small, lightweight, extremely high charge/discharge rate and power density, as well as high flexibility. However, the critical challenge of nowadays MSCs is the limitation of low energy density and their complicated process with the high cost and time-consuming. Here, we reported an all-screen-printable method for fabricating all solid (including electrolyte) and flexible MSCs by rational designed composite electrodes of electrochemical exfoliated graphene (ECG) and long single-walled carbon nanotubes (CNTs), where the method shows features of a facile and scalable route to fabricate and assemble MSCs with cost-effectiveness and high throughput. As a result, the resulting MSCs device exhibits an areal capacitance of 7.7 mF/cm2 and volumetric capacitance of 77.3 F/cm3, and excellent cyclic stability of >99 % after 15000 cycles, which was due to the creation of high diffusion path and the promotion of ion transport capability. The cell exhibits energy and power densities of 10.7 mWh/cm3 and 3.17 W/cm3, respectively. Moreover, there was negligible degradation on capacitance when suffering the bending deformation with radius reduce to 0.5 mm, indicating excellent mechanical flexibility and operation stability. In addition, the output voltage and current can be rationally designed by multiple connections of MSCs devices in series and parallel to fulfill the demanded applications. This work provides a scalable and cost-effective method to produce solid-state MSCs with high energy density, which paves the way for potential wearable devices.