English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 80990/80990 (100%)
造訪人次 : 41636858      線上人數 : 1183
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/81721


    題名: 微米尺寸銅鎳合金電阻材料之電鍍與特性研究;Electroplating and Characterization of the Micro Cu-Ni Alloys used in Electrical Resistor
    作者: 羅元成;LUO, YUAN-CHENG
    貢獻者: 機械工程學系
    關鍵詞: 微電鍍;銅鎳合金微結構;電阻溫度係數;奈米壓痕;腐蝕;micro-electroplating;Copper-Nickel alloy microstructure;temperature coefficient of resistance;Nano-indentation;Corrosion
    日期: 2019-08-21
    上傳時間: 2019-09-03 16:40:44 (UTC+8)
    出版者: 國立中央大學
    摘要: 摘要
    本研究採用微陽極導引電鍍法製備銅鎳合金微柱與微型螺旋等結構。有兩種鍍液分別為:0.006M硫酸銅和濃度0.388 M硫酸鎳濃度之鍍液在偏壓3.8至4.4 V和溫度20至50 °C進行電鍍,0.006M硫酸銅和0.272 M硫酸鎳濃度之鍍液在偏壓4.0至4.6 V和溫度20至50 °C進行電鍍,兩極間距固定在50 μm,結果顯示:兩種鍍液分別在3.8 V和50 °C或4.0 V和50 °C時,有最好之表面形貌,且當偏壓或溫度增加時,兩種鍍液的銅鎳合金之鎳含量都呈現增加之趨勢。
    奈米壓痕測試時發現0.272 M硫酸鎳濃度之鍍液,隨偏壓(4.0 V~4.6 V)和溫度(20 °C~50 °C)增加,銅鎳合金之鎳含量都持續增加,在4.6 V和50 °C條件下,有最大之硬度8.286 GPa。量測電阻溫度係數發現在接近康銅比例(Cu55Ni45)時,在4.4 V和20 °C條件下,會有最小之電阻溫度係數23088 ppm/°C。測量電鍍所得銅鎳合金微柱之抗蝕能力,在偏壓4.6 V和溫度50 °C時所得微柱具有最小之腐蝕電流密度3.07 μA/cm2。
    歸納製作微柱之最佳電鍍條件,使用4.4 V來電鍍螺旋,配合Comsol軟體研究電場對螺旋柱徑之分析,有利於尋求製作銅鎳合金微型螺旋之電鍍條件。研究結果顯示:在析鍍角度越小可以獲得較均勻之線徑,並且在製程參數3時有最小之線徑變化量。

    關鍵詞:微電鍍、銅鎳合金微結構、電阻溫度係數、奈米壓痕、腐蝕
    ;ABSTRACT
    In this study, the microcolumn and micro-helix of Cu-Ni alloy were prepared by microanode-guided electroplating (MAGE). There are two kinds of electrolytes: 0.388 M nickel sulfate solution (the applied voltage from 3.8 to 4.4 V, and the bath temperature from 20 to 50 °C), and 0.272 M nickel sulfate solution (the applied voltage from 4.0 to 4.6 V, and the bath temperature from 20 to 50 °C ) with the gap between the microanode and the cathodic microcolumn was fixed at 50 μm. The results showed that the optimal surface morphologies were obtained with the voltage at 3.8 V and temperature at 50 °C, as well as the applied voltage at 4.0 V and temperature at 50 °C. The semi-quantitative analysis by EDS showed that the Ni-content of Cu-Ni alloys in both baths were increased either the applied voltage or elevated temperature. In the nano-indentation test, it was found that the Ni-content increased with the increase of applied voltage (from 4.0 to 4.6 V) and bath temperature (from 20 to 50 °C) of the 0.272 M nickel sulfate solution. The maximum hardness was 8.286 GPa of the Cu-Ni alloy microcolumn while the applied voltage at 4.6 V and bath temperature at 50 °C. When measuring the temperature coefficient of resistance, it was found that the minimum temperature coefficient of resistance was 23088 PPM/°C when the atomic ratio approaching the constantan alloy (Cu55Ni45, at 4.4 V and 20 °C). The corrosion resistance of the Cu-Ni alloy microcolumn displayed the minimum corrosion current density of 3.07 μA/cm2 at the applied voltage of 4.6 V and the bath temperature at 50 °C. The applied voltage of 4.4V is the optimal parameter in this study for manufacturing 3D Cu-Ni microhelices, and the finite element analysis (FEM) was applied for simulating the distribution of the electrical field of the helical column-diameter by COMSOL MULTIPHYSICS.
    The results showed that the uniform diameter can be obtained with the smaller angle between the microanode and the tip of microcolumn in the MAGE process, and the minimum variation of helical diameter can be obtained with parameter No. 3 in MAGE process.

    Keywords: micro-electroplating, Copper-Nickel alloy microstructure, temperature coefficient of resistance, Nano-indentation, Corrosion.
    顯示於類別:[機械工程研究所] 博碩士論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML206檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明