本篇論文提出應用於太赫茲成像系統340-GHz的反射器天線系統和應用於340-GHz無線發射機中的85-GHz二倍頻器,反射器天線系統使用共聚焦橢球反射系統方式讓路徑長度誤差減小,透過入射反射原理並用公式計算入射反射角度、解析度、路徑長度誤差等與軟體模擬太赫茲輻射路徑,反射器天線系統使用兩個拋物面反射器、一個橢球面反射器及一個平面鏡組成,在饋入端拋物面反射器的焦點上輻射太赫茲波最終反射器天線系統使太赫茲波聚焦在3 m遠,將平面鏡順時針方向旋轉5.58度和逆時針方向旋轉5.58度可掃描距離3 m遠帶測物30×30 cm^2的面積且具有0.8 cm的解析度。 應用於340-GHz無限發射機中的85-GHz二倍頻器使用TSMC 40-nm互補式金氧半導體製程實現,採用差動訊號給入電晶體在輸入端,在二倍頻器輸入端使用傳輸線將輸入阻抗由高阻抗轉到低阻抗並運用變壓器將雙端輸入轉成單端輸入且可將頻寬提高,輸出端的匹配使用變壓器,最後二倍頻器的輸出功率為-3.8 dBm,轉換增益為-9.8 dB,基頻抑制比大於33 dB,3dB頻寬為154-GHz~182-GHz(16.7%),功耗為19 mW。 ;A 340-GHz reflector antenna system applied to THz imaging system and an 85-GHz frequency doubler applied to the 340-GHz transmitter are proposed in this thesis. The reflector antenna system is a confocal ellipsoidal reflection system which can reduce path length error. This system consists of two parabolic reflectors, an ellipsoidal reflector, and a plane mirror. We can calculate the incident angle, reflection angle, resolution, path length error, etc., by the law of reflection and some formulas. When the THz radiation is at the focus of the feed parabolic reflector, the system can focus the THz wave at 3 m. When the plane mirror rotates 5.58° clockwise and rotates 5.58° counterclockwise, the system is able to scan an area 30×30 cm^2 with resolution of 0.8 cm at 3 meters away. The 85-GHz frequency doubler for the 340-GHz transmitter is realized in TSMC 40-nm CMOS process. The input of the transistor is a differential signal. In order to shift the input impedance from high impedance to low impedance, we add transmission lines at the input of the doubler. A transformer is used to convert double-ended into single-ended input and increase the frequency bandwidth. The output matching of the doubler is designed with a transformer. The 85-GHz doubler can provide -3.8 dBm output power with a conversion gain of -9.8 dB, fundamental rejection ratio of 33 dB, and 16.7% 3dB bandwidth (154~182 GHz). In the end, total power consumption is only 19 mW.