English  |  正體中文  |  简体中文  |  Items with full text/Total items : 68069/68069 (100%)
Visitors : 23222318      Online Users : 164
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version

    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/81927

    Title: 應用深度學習於運動區腦波之手部動作預測
    Authors: 徐則林;Hsu, Tse-Lin
    Contributors: 電機工程學系
    Keywords: 腦電波;腦波人機介面;深度學習網路;Electroencephalography (EEG);Brain Computer Interface (BCI);Deep Learning Neural Network
    Date: 2019-10-15
    Issue Date: 2020-01-07 14:38:59 (UTC+8)
    Publisher: 國立中央大學
    Abstract: 心電圖、腦電波、肌電波等是臨床上重要的診斷儀器,傳統溼式 Ag/AgCl電
    故我們使用乾式電極進行實驗。由於在醫學研究中指出 EEG中特定的頻寬具有大腦活
    結合腦波電極設置在 10-20 EEG System之 C3、Cz、C4、F3、F4位置的腦波,每隔 8
    為分析腦波的區間,透過小波轉換 (wavelet transform) 的方式取出此腦波區間的
    (Event RelatedDesynchronization/Event RelatedSynchronization, ERD/ERS),並將五個通
    (Convolution Neural Networks, CNN)及長短期記憶神經網路(Long Short-Term Memory,
    LSTM)進行分析,達到 CNN 80% 及 LSTM 89% 準確率,並以此架構找出動作與腦波相
    對應的連結。;Electrocardiogram (ECG), electroencephalogram(EEG), electromyography(EMG) are important diagnostic instruments in clinic. Although the Ag/AgCl electrode is quite stable in signal reception, it causes user discomfortable in the experiments, especially for using Electrolyte gel to reduce the impedance between the electrode and the skin. The use of wet type electrolyte may cause stimulation to the user′s skin, and even produce allergic reaction, so we use dry electrodes for experiments. Since it is pointed out in medical research that the specific bandwidth in EEG has a correlation between brain activity and motor performance, in this study we propose to develop a brain wave analysis system close to daily movements by integrating brain wave signal processing and IMU system to provide sufficient and marked brain wave training data. In this experiment, IMU is used as the marking tool, and angles change between different actions are used as the time mark of brain wave. The purpose of this experiment is to improve the accuracy of brain computer interface (BCI) by combining IMU and brain wave system. In this research, we mounted two IMU on subject’s left and right arm. The EEG electrodes were attached on C3,Cz,C4,F3, and F4 positions, according to international 10-20 EEG system. Subjects were asked to do specified motion between 8sec, and timing of subject’s posture data was wirelessly transmitted for EEG labeling. EEG data were segmented into epochs from -2sec anchored to subject’s movement onsets. Labeled EEG data were extracted Event RelatedDesynchronization/Event RelatedSynchronization (ERD/ERS) by wavelet transform, and we combine the five channels (C3,Cz,C4,F3, and F4) time-frequency relationship as two-dimension image. Using this image as Convolution Neural Networks(CNN) and Long Short-Term Memory(LSTM) input attained CNN 80% and LSTM 89%, to exploring the connections between subject’s movement and brain wave.
    Appears in Collections:[電機工程研究所] 博碩士論文

    Files in This Item:

    File Description SizeFormat

    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback  - 隱私權政策聲明