中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/81941
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 80990/80990 (100%)
Visitors : 41739884      Online Users : 1870
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/81941


    Title: 微型化雙頻任意功率分配鼠競耦合器;Miniature Dual-Band Rat-race Coupler with Arbitrary Power Division Ratio
    Authors: 劉又榮;LIU, YOU-RONG
    Contributors: 電機工程學系
    Keywords: 鼠競耦合器;雙頻;任意功率分配
    Date: 2019-11-19
    Issue Date: 2020-01-07 14:39:47 (UTC+8)
    Publisher: 國立中央大學
    Abstract: 本研究以差動橋式T線圈與相位轉換器為基本組件,將鼠競耦合器的傳輸線用差動橋式T線圈取代,使其可具有寬頻、雙頻、微小化與不等功率輸出的特性。並以積體被動元件製程與0.18 μm CMOS製程實現微型化寬頻鼠競耦合器、雙頻鼠競耦合器與雙頻不等功率分配鼠競耦合器,以展現所達到的電路效能。
    首先,使用差動橋式T線圈與相位反轉器實現2.5GHz微型化寬頻鼠競耦合器,因為使用了上述兩個組件,所以使電路面積大幅縮小,實際電路面積為1.13 × 1.19 mm2,電氣尺寸在中心頻率2.5GHz下為0.0190  0.02750,也因為使用了相位反轉器來增加頻寬,反射損耗大於15dB的比例頻寬為69.2%。
    其次,沿用微型化寬頻鼠競耦合器的架構,以雙頻差動橋式T線圈取代原本的差動橋式T線圈,達成雙頻操作的效果,並分別使用積體被動元件製程與0.18 μm CMOS製程實現。以積體被動元件製程實現的2.45/5.5GHz雙頻鼠競耦合器,實際電路面積為2.73 × 4.17 mm2,電氣尺寸於2.45GHz為0.0223λ0 × 0.0341λ0,於5.5GHz為0.0501λ0 × 0.0765λ0,反射損耗大於10dB之比例頻寬,在2.45GHz與5.5GHz分別為81.2%與27.3%。而以0.18μm CMOS製程所實現的10/24GHz雙頻鼠競耦合器,實際電路面積為0.871 × 1.18 mm2,電氣尺寸於10GHz為0.029λ0 × 0.0393λ0,於24GHz為0.0697λ0 × 0.0944λ0,反射損耗大於10dB的比例頻寬,在10GHz與24GHz分別為99.8%與30.38%。
    最後,藉由改變雙頻差動橋式T線圈的等效阻抗,實現於2.45GHz有3dB功率分配比,於5.5GHz有0dB功率分配比之鼠競耦合器,電路面積為3.1  4.4 mm2,電氣尺寸於2.45GHz為0.0697λ0 × 0.0944λ0,於5.5GHz為0.0697λ0 × 0.0944λ0,以輸出振幅誤差在±0.5dB來計算頻寬,在2.45GHz與5.5GHz兩頻段分別為42%與7.5%。本研究也探討了使用雙頻差動橋式T線圈實現雙頻不等功率分配鼠競耦合器之設計限制,包括兩中心頻率下的功率分配比與頻率比,做為判定可實現規格範圍的依據。
    ;In this paper, differential bridge-T coils and phase inverter are employed as basic building blocks to realize rat-race couplers with features, like wide bandwidth, dual-band operation, miniaturization and unequal power division ratios. To demonstrate the performance achieved, several design examples are implemented in the integrated passive device (IPD) and 0.18-μm CMOS technology, including wideband rat-race coupler, dual-band rat-race coupler, and dual-band rat-race coupler with unequal power division ratios.
    First, by using differential bridge-T coils and phase inverter, a 2.5 GHz miniaturized wideband rat-race coupler is implemented in IPD. The circuit size is only 1.13 × 1.19 mm2 and the corresponding electrical size is 0.0190  0.02750 at 2.5 GHz. The 15-dB return loss bandwidth is 69.2%. It outperforms the conventional rat-race coupler in terms of circuit size and operation bandwidth.
    Secondly, by using the same structure of the proposed miniaturized wideband rat-race coupler while replacing the original differential bridge-T coils by dual-band differential bridge-T coils, miniaturized dual-band rat-race couplers are achieved. A 2.45/5.5 GHz dual-band rat-race coupler is realized in IPD, and the circuit size is only 2.73 × 4.17 mm2. The corresponding electrical size is 0.0223λ0 × 0.0341λ0 at 2.45GHz, and it is 0.0501λ0 × 0.0765λ0 at 5.5 GHz. Its 10-dB return loss bandwidth is 81.2% at 2.45 GHz while it is 27.3% at 5.5 GHz. In addition, a 10/24 GHz dual-band rat-race coupler is impemented in 0.18-μm CMOS technology, the circuit size is only 0.871 × 1.18 mm2. The corresponding electrical size is 0.029λ0 × 0.0393λ0 at 10 GHz and it is 0.0697λ0 × 0.0944λ0 at 24 GHz. The 10-dB return loss bandwidth is 99.8% at 10 GHz while it is 30.38% at 24 GHz.
    Finally, by varying the equivalent characteristic impedances of the dual-band differential bridge-T coil at the two bands, miniaturized dual-band rat-race coupler that is capable of achieving different power division ratios over the two bands can also be achieved. As an example, a proposed dual-band rat-race coupler having 3dB power division ratio at 2.45 GHz and 0dB power division ratio at 5.5 GHz is realized in IPD. The circuit size is only 3.1  4.4 mm2. The corresponding electrical size is 0.0697λ0 × 0.0944λ0 at 2.45 GHz and it is 0.0697λ0 × 0.0944λ0 at 5.5 GHz. The bandwidth of ±0.5dB amplitude error is 42% at 2.45 GHz and it is 7.5% at 5.5 GHz. Also, the design limitations, of using dual-band differential bridge-T coils for dual-band rat-race coupler designs, including the power division ratio and frequency ratio of the two center frequencies, are thoroughly investigated.
    Appears in Collections:[Graduate Institute of Electrical Engineering] Electronic Thesis & Dissertation

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML153View/Open


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明