中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/82326
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 80990/80990 (100%)
Visitors : 42142089      Online Users : 1001
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/82326


    Title: 結合深度學習與矩陣分解之智慧推薦系統;An Intelligent Recommendation System Based on Deep Learning and Matrix Factorization
    Authors: 陳以錚
    Contributors: 國立中央大學資訊管理學系
    Keywords: 推薦系統;矩陣分解;深度學習;遞迴神經網路;recommendation system;matrix factorization;deep learning;recurrent neural network
    Date: 2020-01-13
    Issue Date: 2020-01-13 14:40:34 (UTC+8)
    Publisher: 科技部
    Abstract: 近年來,推薦系統現在已廣泛地使用在許多領域,其中線上影音推薦為一重要的應用,因為在這資料爆炸的年代,想要手動搜尋到自己想要的資訊不是一件容易的事,透過推薦系統對影片的分析、過濾與推薦,可以使用者更快速的得到自己所需要的,甚或是發掘出新的喜好。本計畫改良了目前的矩陣分解與深度學習用的方法,在訓練時考量了時間因子變化量,提出了多個演算法與訓練模型,去解決了使用者興趣變化對準確度的影響,能更精準地預測與推薦使用者相關的影片。(1) 在矩陣分解為基礎的部分,進一步考慮了使用者評分項目的時間的學習方法。第一種方法中,我們先將user-item評分矩陣依據時間拆解成多個矩陣,再將每個分解後的矩陣輸入至遞歸神經網路LSTM中,預測出新的特徵矩陣,內積重建用戶對未評分物品的評分。(2) 我們使用logistic regression與lasso regression迴歸模型描述使用者對某個類別的喜好變化,透過regression迴歸分析我們可以放大或縮小一些電影的分數,再將regression迴歸分析處理過的資料倒入Matrix Factorization矩陣分解中,學習新的Matrix,得以將預測分數高的電影推薦給使用者。(3) 在深度學習為基礎的部分,本計畫提出了一種以RNN為基礎的新訓練模型。我們先使用特徵探勘(pattern mining)的演算法,萃取出有意義的代表循序特徵(sequential pattern),用以訓練兩個RNN模型;一個為使用者watching data的LSTM,另一個為frequent pattern的LSTM,最後再將兩個預測結果結合,強化學習的結果以增加預測的準確度。 ;Recently, the recommendation system has been applied on several domain; movie recommendation is one important and essential application. By the recommendation system, users could quickly have the information about the movies that he/her may be interesting. However, prior studies focused on recommendation system usually suffer from several issues.In this project, we propose a novel intelligent recommendation system based on the combination of deep learning and matrix factorization. The time factor and interesting evolution are considered and included into model construction. We will focus on three topics, (1) We propose an novel prediction model combined the matrix factorization and LSTM model. (2) We use the regression method to effectively describe the preference evolution before utilizing matrix factorization for rating prediction. (3) We propose a bi-LSTM model with the pattern awareness and enhancement. Furthermore, the proposed algorithms and models are applied on real dataset to show the practicability and effectiveness.
    Relation: 財團法人國家實驗研究院科技政策研究與資訊中心
    Appears in Collections:[Department of Information Management] Research Project

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML255View/Open


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明