中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/83754
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 80990/80990 (100%)
Visitors : 41688535      Online Users : 1428
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/83754


    Title: A Survival Tree based on Stabilized Univariate Score Tests with High Dimensional Covariates
    Authors: 徐瑋辰;Hsu, Wei-Chern
    Contributors: 統計研究所
    Keywords: 右設限;;高維度變數;基因序列;Right censoring;Tree;High dimensional covariate;Gene selection
    Date: 2020-07-30
    Issue Date: 2020-09-02 17:01:47 (UTC+8)
    Publisher: 國立中央大學
    Abstract: 在醫學研究中,生物指標因素(prognosis factor)和其相對應的預測模
    型已經被廣泛使用。存活樹(Survival tree)和森林(Survival forest)是當
    前非常熱門用於存活數據(Survival data)開發預測模型的非參數方法。它們
    具有很高的彈性,可以合理地檢測某些變數間的交互作用而不需要太多模型
    假設。此外,一棵存活樹可以根據其二元分類及不斷遞迴的特性產生多個指
    標因素並將樣本分為多個組別。在本文中,我們點名的存活樹在高維度變數
    下的實施困難原因及解決辦法。此外,我們還指出,用於檢測樹節點在傳統
    logrank test 下具有致命的缺點。為了解決上述問題,我們提出了穩定單變
    量score statistics 來找出樹的節點。進階來說,我們可以在沒有任何迭代
    優化的情況下執行高維度變數的篩選和提出決策,在某些特殊運算下能提升
    效率。本文也提出對於當logrank test 無法提供適量的統計決策時,我們提
    出的方法能適當解決這個問題並產生更有預測能力的存活樹。;Analysis of prognostic factors and prediction models has been considered extensively in
    medical research. Survival trees and forests are popular non-parametric tools for developing
    prognostic models for survival data. They offer great flexibility and can automatically detect
    certain types of interactions without the need to specify them beforehand. Moreover, a single tree
    can naturally classify subjects into different groups according to their survival prognosis based on
    their covariates. In this thesis, we point out the difficulty of tree-based model fitting a high
    dimensional covariate. Furthermore, we also point out that the traditional logrank tests for
    detecting the nodes of a tree have fatal drawbacks. In order to overcome these difficulties, we
    propose a stabilized univariate score statistics to find the nodes of a tree. We show that the high
    dimensional score tests can be performed without any iteration and optimization, leading to a
    computationally efficient test procedures. We also show that the proposed method can resolve the
    drawbacks of the logrank tests, leading to a highly precise tree. Simulation studies are performed
    to see the relative performance of the proposed method with the existing method. The lung cancer
    dataset is analyzed for illustration.
    Appears in Collections:[統計研究所] 博碩士論文

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML205View/Open


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明