中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/83754
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 80990/80990 (100%)
造访人次 : 41689783      在线人数 : 1365
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/83754


    题名: A Survival Tree based on Stabilized Univariate Score Tests with High Dimensional Covariates
    作者: 徐瑋辰;Hsu, Wei-Chern
    贡献者: 統計研究所
    关键词: 右設限;;高維度變數;基因序列;Right censoring;Tree;High dimensional covariate;Gene selection
    日期: 2020-07-30
    上传时间: 2020-09-02 17:01:47 (UTC+8)
    出版者: 國立中央大學
    摘要: 在醫學研究中,生物指標因素(prognosis factor)和其相對應的預測模
    型已經被廣泛使用。存活樹(Survival tree)和森林(Survival forest)是當
    前非常熱門用於存活數據(Survival data)開發預測模型的非參數方法。它們
    具有很高的彈性,可以合理地檢測某些變數間的交互作用而不需要太多模型
    假設。此外,一棵存活樹可以根據其二元分類及不斷遞迴的特性產生多個指
    標因素並將樣本分為多個組別。在本文中,我們點名的存活樹在高維度變數
    下的實施困難原因及解決辦法。此外,我們還指出,用於檢測樹節點在傳統
    logrank test 下具有致命的缺點。為了解決上述問題,我們提出了穩定單變
    量score statistics 來找出樹的節點。進階來說,我們可以在沒有任何迭代
    優化的情況下執行高維度變數的篩選和提出決策,在某些特殊運算下能提升
    效率。本文也提出對於當logrank test 無法提供適量的統計決策時,我們提
    出的方法能適當解決這個問題並產生更有預測能力的存活樹。;Analysis of prognostic factors and prediction models has been considered extensively in
    medical research. Survival trees and forests are popular non-parametric tools for developing
    prognostic models for survival data. They offer great flexibility and can automatically detect
    certain types of interactions without the need to specify them beforehand. Moreover, a single tree
    can naturally classify subjects into different groups according to their survival prognosis based on
    their covariates. In this thesis, we point out the difficulty of tree-based model fitting a high
    dimensional covariate. Furthermore, we also point out that the traditional logrank tests for
    detecting the nodes of a tree have fatal drawbacks. In order to overcome these difficulties, we
    propose a stabilized univariate score statistics to find the nodes of a tree. We show that the high
    dimensional score tests can be performed without any iteration and optimization, leading to a
    computationally efficient test procedures. We also show that the proposed method can resolve the
    drawbacks of the logrank tests, leading to a highly precise tree. Simulation studies are performed
    to see the relative performance of the proposed method with the existing method. The lung cancer
    dataset is analyzed for illustration.
    显示于类别:[統計研究所] 博碩士論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    index.html0KbHTML205检视/开启


    在NCUIR中所有的数据项都受到原著作权保护.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明