English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 80990/80990 (100%)
造訪人次 : 41625040      線上人數 : 1828
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/83892


    題名: 利用機器學習預測臺幣匯率
    作者: 梁煜傑;LIANG, YU-CHIEN
    貢獻者: 經濟學系
    關鍵詞: 機器學習;馬可夫轉換模型;向量誤差修正模型;預測匯率
    日期: 2020-06-30
    上傳時間: 2020-09-02 17:33:00 (UTC+8)
    出版者: 國立中央大學
    摘要: 在經濟領域有學者研究匯率的經濟預測模型;在電腦科學領域學者利用了機器學習模型來預測匯率,但是跨領域學者常僅與電腦科學的模型比較,很少比較經濟預測模型與機器學習模型的預測績效,本文利用馬可夫轉換模型(Markov Switching Model)及向量誤差修正模型(Vector Error Correction Model)來與機器學習(Machine Learning)比較預測能力的優劣,結果發現在短期經濟預測模型與機器學習模型並無明顯的差異,而在長期機器學習模型有比較好的預測能力。;In the field of economics, scholars studied how to forecast exchange rates by economic models. In the field of computer science, scholars applied machine learning approach to forecast exchange rates. Although cross-disciplinary scholars often compare their empirical model with computer science models, they hardly compare the performance of economic forecasting models with the performance of machine learning approach. In this thesis, we applied Markov Switching Model, Vector Error Correction Model and Machine Learning approach to forecast the exchange rate of new Taiwan dollar. Besides, we compared the outcome of economic model with the outcome of machine learning models. The results show that, in the short run forecast horizon, there are insignificant difference between the economic models and the machine learning models. In the long run forecast horizon, there are significant differences between economic models and the machine learning models.
    顯示於類別:[經濟研究所 ] 博碩士論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML152檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明