English  |  正體中文  |  简体中文  |  Items with full text/Total items : 70548/70548 (100%)
Visitors : 23226840      Online Users : 249
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/83993


    Title: 基於替代語意的 pandas DataFrame 靜態型別檢查器;An Alternative Semantic-based Type Checker for pandas Dataframes
    Authors: 呂銘洋;Lu, Ming-Yang
    Contributors: 資訊工程學系
    Keywords: 程式語言;資料框;資料科學;靜態分析
    Date: 2020-07-24
    Issue Date: 2020-09-02 17:51:41 (UTC+8)
    Publisher: 國立中央大學
    Abstract: DataFrame 在資料科學中經常被用來處理表狀資料的概念,Python
    的 pandas 函數庫是一個廣被實用的 DataFrame 實作。而因為受限於複
    雜的 API 設計與缺乏靜態工具,使用者在編寫 pandas 程式時往往是容易
    犯錯的,這些錯誤來自於:沒有追蹤行欄位的標籤與型別、透過字串傳
    遞的旗標參數與缺乏函數參數的型別資訊。
    本研究討論了為 pandas 提供靜態分析功能的難處,並提出了一個用
    於靜態分析 pandas 程式的靜態型別檢查器:我們提出的作法基於使用替
    代語意,並且我們討論了如何為常用的 API 進行靜態檢查。並且我們使
    用 Python 完成了一個初步實作以作為概念驗證。我們透過定量分析的
    方式評估我們初步實作的功能性,並以使用案例來討論我們的工具能如
    何被使用。;Dataframe is a well-used concept in Data Science tasks, which
    makes abstract on how a programmer manipulates tabular data. pandas
    is a popular and widely-used Python library which implements dataframes.
    Due to the complexity of its API design and lacking static analysis tools,
    programming in pandas is considerably an error-prone task. There are
    three types of common error: errors due to lacking column labels and
    types, errors due to string-typed flag arguments, and errors due to
    lacking type informations of functions as arguments.
    In this paper, we discuss what is the challenges of providing the
    ability of static analysis on pandas programs. We propose a static type
    checker for pandas programs based on Alternative Semantic. We also dis-
    cuss how to statically analyze common pandas APIs.
    We develop a preliminary implementation based on Python as our
    proof of concept. We evaluate our implementation with a qualitative
    analysis on its functionality and we discuss a case study about how can
    our checker reduce error‐proneness during development.
    Appears in Collections:[資訊工程研究所] 博碩士論文

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML17View/Open


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback  - 隱私權政策聲明