中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/84006
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 80990/80990 (100%)
造访人次 : 41640029      在线人数 : 1274
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/84006


    题名: 生成式對抗網路架構搜尋;GANAS: Generative Adversarial Network Architecture Search
    作者: 吳佳臻;WU, CHIA-CHEN
    贡献者: 資訊管理學系
    关键词: 機器學習;深度學習;神經架構搜索;生成式對抗網路;Machine Learning;Deep Learning;Neural Architecture Search;Generative Adversarial Networks
    日期: 2020-07-15
    上传时间: 2020-09-02 17:54:19 (UTC+8)
    出版者: 國立中央大學
    摘要: 近年來,機器學習在各個領域得到了廣泛的應用,並取得了突出的成績。在機器學習領域的各種方法中,深度學習是最受關注的一種,深度學習能夠快速處理海量資訊,滲透並改變著我們的日常生活。在深度學習中,設計優秀的神經網路架構是非常重要的事情,然而,設計一個優秀的架構不僅需要深度學習以及相關領域的專業知識,還需要在目標任務領域有足夠的經驗。因此,目前有很多關於自動產生神經網路架構的研究並實現神經網路的自動設計,然而大多數的研究非常消耗計算資源。因此在本文中,我們提出了一種新的方法,並將其稱為生成對抗式網路架構搜索(GANAS),該模型將conditional GANs擴展到NAS領域,最終目標是使用訓練有素的生成器生成神經網路架構,這種方法最大的特點是根據不同的資料會產生不同的神經網路架構,從而省去人工手動設計神經網路架構的時間,同時,只需要少量的運算資源便可達成我們的任務。;In recent years, machine learning has gained a wide range of applications in various fields and has achieved outstanding results. Among the various approaches in the machine learning field, deep learning is the one that has received the most attention; deep learning can process vast amounts of information quickly, permeates, and changes our daily lives. In deep learning, designing excellent neural network architecture is very important, however, designing an excellent architecture requires not only deep learning and expertise in the relevant field but also sufficient experience in the target task area. Therefore, there is a lot of research on generating neural network architectures automatically, however, such search methods are very consuming computing resources. Therefore, in this paper, we propose a new approach and call GANAS, the model extends conditional GANs into the realm of NAS, with the ultimate goal of generating neural network architectures using trained well generators, the best feature of this method is that different neural network architectures are generated according to the data, thus saving the time of designing network architectures, and at the same time, only a small amount of computational resources is needed to achieve our task.
    显示于类别:[資訊管理研究所] 博碩士論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    index.html0KbHTML84检视/开启


    在NCUIR中所有的数据项都受到原著作权保护.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明