機器學習是一門從數據中由電腦自行學習得出特徵,再利用特徵對未知數 據進行預測的技術。機器學習這門技術會因所針對的目標資料集不同,而設計 出對應的模型架構,也因此所需對應專業知識、所需花費的研究時間與資源甚 多,在普遍應用的期望下有一定的門檻與瓶頸。為了加速神經網路的建構 ,我們建構了一套基於演化演算法,結合深度學習技術,漸進式概念的建模演 算法,搭配經過設計的細胞結構,應用在運算資源稀缺的環境下,並在針對特 定資料集的背景下,自動搜尋出對應最優的神經網路架構。;No matter designing a new neural network (NN) architectures or modifying an existed model require both human expertise and intense computational resources. We propose a progressive strategy to develop models on a “meta” level which recently arose interests of experts. This meta-modeling algorithm is based on evolutionary algorithms and deep learning techniques to generate NN architectures for a given task automatically. The work we did also includes encoding a model structure into many “cells” in a continual representation. Therefore, after defining the cell structure and its topology, we find the structures for the given task cell by cell, brick by brick, and find a structure which has the highest accuracy eventually.