English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 80990/80990 (100%)
造訪人次 : 41628996      線上人數 : 3367
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/84030


    題名: 多向注意力機制於翻譯任務改進之研究
    作者: 林佳蒼;Lin, Chia-Tsang
    貢獻者: 資訊管理學系
    關鍵詞: 自然語言處理;機器翻譯;注意力機制;Transformer;Natural Language Processing;Machine Translation;Attention mechanism;Transformer
    日期: 2020-07-20
    上傳時間: 2020-09-02 17:57:12 (UTC+8)
    出版者: 國立中央大學
    摘要: 機器翻譯是自然語言處理中熱門的研究主題之一,歷年來都有許多模型被提出,其中Transformer運用多向注意力(Multi-head Attention)機制大幅提升了機器翻譯的準確度,但多數研究卻還是專注在模型的創新及架構的調整,而不是對原生的Transformer進行優化,因此本研究將針對Transformer中的多向注意力進行改良,以遮罩的方式在不增加訓練參數及訓練時間的情況下,增加注意力機制學習輸入句子小區資訊的能力,讓Transformer能在中英翻譯任務上提升3.6~11.3%的準確率,德英翻譯任務上提升17.4%的準確率。;Neural Machine Translation (NMT) is one of the popular research topics in Natural Language Processing (NLP). Lots of new model have been proposed by researchers throughout the world each year. Recently, a model called Transformer, which uses only attention mechanism, outperforms a lot of model in NMT. Most research on this model focus on model innovation, but not adjusting the original model itself. Therefore, this work will modify the Multi-head Self-Attention module used in this model to better learn the information about the input. The result increases the performance of the model by 3.6 to 11.3% BLEU score on Chinese-English translation and 17.4% BLEU on Dutch-English translation.
    顯示於類別:[資訊管理研究所] 博碩士論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML215檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明