English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 80990/80990 (100%)
造訪人次 : 42119216      線上人數 : 1296
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/84034


    題名: 基於使用者行為的數位音樂推薦方法
    作者: 謝宗佑;Hsieh, Tsung-Yu
    貢獻者: 資訊管理學系在職專班
    關鍵詞: 協同過濾;Word2vec;關聯規則;Apache Spark;Collaborative Filtering;Word2vec;Frequent-Pattern Growth;Apache Spark
    日期: 2020-06-24
    上傳時間: 2020-09-02 17:57:29 (UTC+8)
    出版者: 國立中央大學
    摘要: 推薦系統廣泛被主流的線上服務商(例如:Amazon、Spotify、Netflix)應用來增加服務、商品能見度進而誘發使用者購買商品或持續使用服務,受益於網際網路技術成熟與巨量資料相關技術不斷進步,推薦系統逐漸從分析傳統交易資料(熱門購買商品)跨進使用各種演算法預測使用者對歌曲的喜好程度進而做到個人化推薦。
    本研究使用Yahoo! Music中使用者對於歌曲評分資料,以目前廣泛被使用在個人化推薦的協同過濾演算法作為基準輔以兩種基於使用者行為上找商品相似度的演算法關聯法則、Word2vec組合出來的混合模型,同時考量實際上的情境:
    1.時間序問題:使用Real-life split的概念來切割訓練與驗證資料集。
    2.有限的推薦商品數:取Top k的資料驗證map@5,map@10效果。
    結果顯示兩種方法皆可以提升準確率且本論文的技術採用Apache Spark,處理大量資料集將帶來顯著的效益。
    ;The recommendation system is widely used in the on-line entertainment industries.By building the system, services prociders like Amazon、Spotify、Netflix can reveal as more products or contents to their users as possible. The more satisfaction they get from their users means the more user engagement they win.
    Take digital music services, in trandition, the system recommended musics based on the historical records or its’ metadata. Along with the improvement of technology, we can easily process large datasets such as user-ratings data or user-behavior data and apply some data mining algorithm such as collaborative filtering algorithm to do the personalization recommendation.
    In this study, the Yahoo! Music dataset is used.First, we try to tune the performance of collaborative filtering algorithm and treat it as the baseline of our recommendation system. Second, we reform the user-ratings data to apply two algorithms: Frequent-Pattern Growth and Word2vec in order to find the similarity of songs. Finally, the hybrid models combine the results of CF and fp-growth/Word2vec and both their evaluation metrics : map@5、map@10 are improved. Moreover, the approach we provided is adopted in the Apache Spark framework. It benefits us when dealing with the larger datasets in real world.
    顯示於類別:[資訊管理學系碩士在職專班 ] 博碩士論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML190檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明