摘要: | 早產兒因發育尚未成熟,所以相較於一般足月嬰兒有更高的風險在運動神經發展上有所受損或罹患腦性麻痺。臨床上,要精準判斷一個嬰兒是否在運動神經發展上有所受損,不是依賴一個有經驗的醫生在一段錄影好的影片上利用視覺來評估,就是得要仰賴昂貴的儀器。可想而知,這是個耗時且昂貴的診療程序。所以,一個能夠自動化評估的輔助系統就變得十分迫切了。最近幾年來,OpenPose 是一個有效且被普遍採用的姿態估測的演算法,但它的缺點是它是針對成人姿態所訓練而成的,導致若是應用於嬰兒姿態偵測時,整體效果會下降。所以,此論文會開發一個嬰兒姿態偵測演算法,然後,據此演算法開發出一個嬰兒整體動作指標分析輔助系統。首先透過單眼相機記錄嬰兒影像,再透過生成對抗網路 (Generative Adversarial Network)生成嬰兒骨架,最後使用一些後處理技術 (如:平滑化、去雜訊濾波器等)萃取出骨架點資訊。基於以上骨架點資訊,嬰兒運動狀態可以透過位移與速度的變異數與運動頻率來呈現,之後再自動化輸出相對應的嬰兒評估指標。最後本論文以實驗驗證提出生成對抗網路的關節預測準確性與整體嬰兒評估指標之有效性。;Premature babies are not yet mature, so they have a higher risk of developing motor nerve damage or cerebral palsy than full-term infants. Clinical assessments for infant’s risk of developing neuromotor impairment either are assessed through visual examination by specialized clinicians via recorded videos or involve expensive equipment, which are usually time-consuming, expensive, and only available in highly-resourced environments. This makes assessment inaccessible for families of limited means and in low resource countries. Therefore, it is desirable to automate the process of evaluating the quality of infant movements; otherwise, the early identification is not possible. In recent years, the OpenPose is a very popular human pose estimation algorithm; however, it focuses on adults, leading a degradation of accuracy if applied to infants. Therefore, this paper will develop an algorithm for infant posture detection, and then, based on this algorithm, an auxiliary system for the analysis of infant overall motion indicators will be developed. First record the baby image through the monocular camera, then generate the baby skeleton through the Generative Adversarial Network, and finally use some post-processing techniques (such as smoothing, noise reduction filter, etc.) to extract the skeleton point information. Based on the above skeleton point information, the baby′s movement status can be presented through the variation of speed and acceleration and the movement frequency, and then the corresponding infant evaluation index is automatically output. Finally, some experiments will be designed to validate the effectiveness of proposed method. |