低溫熱能(< 200℃)是業界大量且尚未開發的能源,廣泛存在於我們的生產與生活中,包括工業廢熱、地熱、太陽能熱以及海洋溫差能熱等,其儲量巨大、種類繁多,尤其是對於工業廢熱的回收存在著廣闊的利用前景,但由於缺乏有效和高成本效益的回收方法,低溫熱能一般不被工業所採用,因而形成熱污染而導致環境問題。將低溫熱能進行有效的回收,既有利於解決能源枯竭問題,又有益於緩解環境污染問題。 本論文主要是探討熱再生化學電池( Thermally-Regenerative Ammonia-Based Flow Battery, TRAB )恆溫機構之設計與分析,研究中會以數值模擬分析,找出熱再生化學電池模組恆溫性能設計參數,以滿足陰陽極腔體維持操作溫度40~80℃達成優化蒸餾和操作溫度條件,以保持運轉效率,並分析模組熱運轉時熱損失,希望藉由透過數值模擬分析來設計出最佳恆溫機構,提高熱再生化學電池之使用效率以及實用性。 除了恆溫機構之模擬分析,本論文也進行設計以及製作熱再生化學電池模組,希望透過串聯五組電池的方式提升其發電電壓與電功率密度,並進行發電實驗與可變因子發電試驗,其中可變因子試驗為分別透過改變氨水濃度、電解液溫度、磁場強度三項可變因子,比較不同參數所帶來的影響,並且與模擬結果比較,探討恆溫機構設計的可行性,希望能將熱再生化學電池效率提升,朝向量產化的目標前進。;Low-grade thermal energy (< 200°C) is a large amount of untapped energy produced by various industrial plants and can also be obtained from geothermal sources. Low-grade thermal energy is widely used in our production and life, including industrial waste heat, geothermal, solar energy and ocean thermal energy. Its reserves are huge and varied, especially for the recycling of industrial waste heat. But due to the lack of efficient and cost-effective recycling methods, low- grade thermal energy is generally not adopted by industry, and consequently forming thermal pollution and causing environmental problems. The effective recovery of low-grade thermal energy is not only conducive to solving the problem of energy depletion, but also beneficial to alleviating environmental pollution problems. This paper focuses on the constant temperature mechanism design and analysis for Thermally-Regenerative Ammonia-Based Flow Battery (TRAB) by using of COMSOL Multiphysics. In this research, we will analyze heat transfer parameters of the constant temperature mechanism to achieve the optimal distillation and operating temperature ( 40~80℃) to maintain the operating efficiency and analyze the heat of the module during thermal operation loss,and hope to design the best constant temperature mechanism to improve the efficiency and practicality of Thermally-Regenerative Ammonia-Based Flow Battery.