English  |  正體中文  |  简体中文  |  Items with full text/Total items : 78852/78852 (100%)
Visitors : 36203306      Online Users : 3095
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version

    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/86647

    Title: 可選字及可再訓?眼寫系統;Selectable and retrainable eye writing system
    Authors: 林鈺庭;Lin, Yu-Ting
    Contributors: 電機工程學系
    Keywords: 眼電圖;眼寫;深度學習;卷積網路;數據擴增;EOG;eye-writing;deep learning;CNN;data augmentation
    Date: 2021-08-05
    Issue Date: 2021-12-07 13:04:35 (UTC+8)
    Publisher: 國立中央大學
    Abstract: 患有肌萎縮側索硬化症 (Amyotrophic lateral sclerosis, ALS)的病人,由
    本研究以阿拉伯數字(0~9)、大寫英文字母(A~Z)以及 4 個特殊符號(空
    格、輸入、句點、問號),共 40 個符號,建立一套眼寫系統。使用眼電圖法
    (Electrooculography, EOG)記錄眼球運動,將 EOG 訊號轉為影像利用卷積
    神經網路(Convolutional Neural Networks,CNN)進行符號辨識,以眨眼數
    以及擴增資料,以 k 折交叉驗證(k-fold cross-validation)的方式訓練卷積
    準確率(Accuracy)。;In patients with amyotrophic lateral sclerosis (ALS), due to the degeneration
    of motor neurons, the muscles will gradually atrophy, lose exercise ability, and
    cannot use oral and physical communication. Eye moving function that
    degenerates later may become the only way for the later-stage patients to rely on
    to communicate with others.
    This study uses Arabic numerals (0~9), uppercase English letters (A~Z) and
    4 special symbols (space, input, dot, question mark), a total of 40 symbols, to
    establish the eye-writing system. This system uses electrooculography (EOG) to
    record eye movements. It converts the EOG signals into images for symbol
    recognition with a convolutional neural network (CNN). It uses the number of
    blinks as special commands to control the entering and exiting of the writing and
    recognition subsystem, the start and end of writing, character selection and
    deletion. The system functions to emulate general handwriting and typing
    The data required for model training include the original data collected by
    eye-writing all symbols for multiple times and the augmented data. The CNN is
    trained by k-fold cross-validation. When the system is practically used by the user,
    any symbol trace that leads to successful character recognition or selection can be
    used to retrain the neural network model to make the model gradually become
    more robust. The more the system is used and retrained, the more it will fit the
    user′s writing habits, and the accuracy of eye-writing recognition will be gradually
    Appears in Collections:[電機工程研究所] 博碩士論文

    Files in This Item:

    File Description SizeFormat

    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明