中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/89061
English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 80990/80990 (100%)
造訪人次 : 41655201      線上人數 : 2283
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/89061


    題名: 分區式揀貨倉庫之訂單批次化問題探討
    作者: 蔡昕頤;Tsai, Hsin-Yi
    貢獻者: 工業管理研究所
    關鍵詞: 物流中心;分區式揀貨系統;訂單批次化;訂單批次選取;動態式揀貨路徑;Distribution Center;Zone Picking System;Order Batching;Order Batch Selection;Dynamic Order Picking Route
    日期: 2022-07-21
    上傳時間: 2022-10-04 10:50:00 (UTC+8)
    出版者: 國立中央大學
    摘要: 近年來,網路購物的迅速發展,消費管道由實體店面轉移至電商平台,更因COVID-19(新冠肺炎)疫情席捲全球,零售業網路銷售額屢創新高,而網購商家所主打的24小時快速到貨及與日俱增的配送量,皆考驗著物流中心的產能與效率。因此,如何在快速滿足客戶需求的同時降低成本,儼然成為物流中心的一大挑戰。
    物流中心的作業流程可歸類為下列九項:進貨、搬運、儲存、盤點、訂單、揀貨、補貨、出貨、輸配送,其中揀貨作業是最具客戶敏感度的一環,同時也是作業量與人力耗費最大的一項工作。目前大多數的物流中心是屬於「勞力密集」的產業,揀貨作業占物流中心運營總成本的50至75%,為物流中心「成本最高的作業流程」,且揀貨作業時間佔整個物流作業時間約30至40%。是故,優化揀貨流程成為物流中心的首要目標。
    以往,物流中心的揀貨方式普遍為「個別揀取」,即一位揀貨員一次揀取一張訂單,此法的優點是簡單明瞭,缺點則是效率較低。對此,常見的解決方式為「批次揀取」,意即將相似訂單合併處理,一個揀貨員同時對多張相似訂單進行揀貨,以減少揀貨作業時間與所需行走距離,由此可見,訂單批次化的優劣對揀貨效率將產生關鍵影響,若能找到適合的訂單批次化方法勢必能顯著提升揀貨效率。
    然而,過往的訂單批次化相關文獻,鮮少探討物流業常見的「分區式揀貨系統」。此揀貨系統的揀貨行走路線流暢,但隨之而來的是動線相較複雜,因此搭配優良的揀貨策略顯得格外重要。基於上述原因,本研究將針對分區式揀貨系統中的批次化問題進行研究,並期望透過完整的模擬實驗與嚴謹的績效分析,能對此類問題有更深入的探討,亦對未來類似的研究能有所貢獻。;Nowadays, online shopping has rapidly developed, and the "Stay-at-Home Economy" has accelerated the alteration of consumer behavior from the retailer to e-commerce platforms. Due to this situation, the change of shopping mode has increased the difficulty of logistics. The 24-hour fast delivery and the increasing volume of online shopping test the logistic efficiency. Response instantly to consumer needs is a necessary ability to distribution centers.
    Among all operation of the distribution center, order picking is the most workload and manpower operation. At present, most distribution centers are "labor-intensive" industry. Order picking account for about 50-75% of the total operating costs, and the order picking takes about 30-40% of the total operating time. Therefore, how to optimize the order picking process is the primary goal of the distribution center.
    In the past, the general order picking method was "individual picking", that is, one picker conducts one order at a time. The advantage of this method is simple to complete for those manipulators, but the disadvantage is that it is less efficient. In this regard, the common solution is "batch picking", which means that similar orders are merged to same order batch and be operated by pickers together, so a picker can select multiple and similar orders at the same time, reducing the picking time. The pros and cons of order batching impacts significantly.
    However, in past essay about order batching, the research environment was relatively single and seldom discussed "zone picking system". This kind of picking system has a prime merit, smooth picking routes, but the disadvantage is that the picking traffic flow is much more complicated. It is important to match an excellent picking strategy. Based on the reasons above, this research will study the picking strategy in zone picking system, and will mainly discourse the order batching problem. In addition, in order to improve the efficiency, this research will also state the order batch selection problem and dynamic order picking routing problem, and finally find the most suitable picking strategy. Expecting that through this complete simulation experiments and statistical analysis can increase the understanding of order picking issues for the future of distribution center.
    顯示於類別:[工業管理研究所 ] 博碩士論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML64檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明