摘要: | 由於氣體排放自由擴散到大氣中,導致地球表面溫度升高,全球 變暖正在被研究。減少排放的解決方案之一是使用膜技術進行氣體分 離。與傳統分離工藝相比,聚合物膜的應用具有成本效益優勢。混合 基質膜 (MMM) 是複合聚合物膜結構,與最近的研究中的原始聚合 物膜相比,它具有更高性能的潛力。二氧化矽是一種低成本且易於修 飾表面的材料,已在許多應用中使用。此外,根據現有文獻,氨基表 面改性用於改善 CO2氣體與膜之間的相互作用,利用氨基丙基三甲氧 基醚( APTMS)、乙二胺 EDA)和丙烯酸甲酯 MA)兩種不同的表 面改性工藝。改性的結果會在二氧化矽納米粒子表面形成一層薄薄的 氨基層。 在這項工作中,我們使用聚醚嵌段酰胺 (PEBAX®2533) 作為基材聚 合物膜和 N-二甲基乙酰胺 (DMAc) 作為溶劑以及二氧化矽納米粒 子表面改性作為膜的填料來製備 MMM。動態光散射 (DLS)、 X 射 線衍射 (XRD)、傅里葉變換紅外 (FTIR) 和掃描電子顯微鏡 (SEM) 作為表徵儀器對膜和二氧化矽粉末進行表徵。對於 膜的透氣性, CO2 和 N2 用作膜的原料氣,壓力為 2 bar,壓力為 35oC。正如文獻所證 明的,理論上,較高的胺含量會導致 CO2 相互作用增加。預期結果 是與原始膜相比,具有二氧化矽改性的 MMM 具有更高的性能。;Global warming has being investigated during the increasing of earth surface temperature caused by the gas emissions spread freely to the air atmosphere. One of the solutions to decrease emissions is gas separation using membrane technology. The application of polymer membranes has cost-efficiency advantages compared to traditional separation processes. Mixed-matrix membranes (MMMs) are the composite polymer membrane constructs that have demonstrated potential for higher performance compared to the pristine polymer membrane in recent research. Silica is one of the low-cost material and easy to modify the surface that has been used in many application. In addition, the amino surface modification is used to improve the interaction between CO2 gas and membrane by using the two different surface modification process with aminopropyl trimethoxylane (APTMS), ethylenediamine (EDA), and methyl acrylate (MA) according to existing literature. The results of modification will makes a thin amino layer coated on the surface of silica nanoparticles. In this work, we were preparing the MMMs using polyether-block-amide (PEBAX®2533) as a substrate polymer membrane and N-dimethylacetamide (DMAc) as a solvent also the silica nanoparticles surface modification as a filler of the membrane. Dynamic light scattering (DLS), X-ray diffraction (XRD), fourier transform infrared (FTIR), and scanning electron microscopy (SEM), were used as the characterization instruments to characterize the membrane and silica powder. For membrane gas permeability, CO2 and N2 were using as the feed gas of the membrane at 2 bar of pressure at 35oC atmosphere. Theoretically, the higher amine content should lead to increased CO2 interaction, as proven in the literature. The expected result is the MMMs with silica modification has a higher performance compared to the pristine membrane. |