中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/89543
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 80990/80990 (100%)
Visitors : 42800836      Online Users : 961
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/89543


    Title: 台灣通膨預測與重要變數探討 — 監督式降維模型之應用;Disentangling Latent Variables for Inflation Forecasting in Taiwan — Applications of Supervised Dimension - Reduction Methods
    Authors: 潘宗麟;Pan, Tsung-Lin
    Contributors: 財務金融學系
    Keywords: 機器學習;監督式學習;通膨預測;降維;Machine Learning;Supervised Learning;Inflation Forecasting;Dimension reduction
    Date: 2022-09-12
    Issue Date: 2022-10-04 11:44:30 (UTC+8)
    Publisher: 國立中央大學
    Abstract: 國內有關於通膨之文獻,多著重於使用特定變數進行預測。然而特定變數的選擇,多半是根據傳統經濟理論認定與通膨相關的變數,侷限了研究者發現其他重要變數的可能性。目前國內鮮有文獻探討高維度資料集於通膨預測之應用,因此本文參照 Forni et al. (2005); Giannone et al. (2004); Stock and Watson (2002a, 2002b, 2012b),嘗試由上而下 (top-down),利用過擴散指數預測法 (diffusion index forecasting) 預測台灣通膨。
    本文蒐集 2000 年至 2021 年間,近 100 個對於台灣通膨具有潛在影響力變數,探討不同降維方法所萃取之潛在因子 (latent factor) 對模型預測力的影響,發現使用監督式的降維方法有助於提升模型整體預測能力。本文採納 Stock and Watson (2002b) 之建議,事先將變數分為11 大類後再進行預測。發現在分類前預測力最好的偏分量迴歸 (PQR) 於分類後模型之預測力有了更進一步提升。本文接著探討預測過程中的關鍵變數、不同的時空背景下 11 大類別相對重要性之消長,最後建構通膨 (縮) 預警模型,做為台灣央行制定貨幣政策時的參考依據。
    ;Past literature on Taiwan’s inflation forecasting mostly confines to only several theory-specific variables, which limits the possibility of roles played by other potential important variables. In view of the superior forecasts from the diffusion index method via incorporating large dimension information via PCA as in Forni et al. (2005) ; Giannone et al. (2004) ; Stock and Watson (2002a, 2002b, 2012b), this paper extends the framework to allow for linear/nonlinear, supervised/unsupervised dimensionality reduction methods. We collected nearly 100 potential variables, from the period of 2000 to 2021, in order to extract the hidden common factors and for inflation forecasting. Among the examined 4 approaches, our results indicate that the supervised partial quantile regression (PQR) dominate the other 3 approaches in anticipating inflation. Once we further divide variables into 11 categories and extract category-specific factors for the subsequent forecasting as in Stock and Watson (2002b), we found that the predictability of PQR became even better. Based on these results, we not only investigate the importance of each category toward inflation across time, but also establish an early warning model for monitoring the arrival of radical inflation/deflation and adjusting for policy interventions.
    Appears in Collections:[Graduate Institute of Finance] Electronic Thesis & Dissertation

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML78View/Open


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明