中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/89597
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 80990/80990 (100%)
造访人次 : 41643527      在线人数 : 1172
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/89597


    题名: 空氣汙染對臺灣太陽能發電之影響
    作者: 林峻鋒;Lin, Jun-Feng
    贡献者: 產業經濟研究所
    关键词: 太陽能;空氣汙染;懸浮微粒;容量因數;工具變數;Solar energy;Air pollution;Particulate matters;Capacity factor;Instrumental variable
    日期: 2022-08-03
    上传时间: 2022-10-04 11:47:44 (UTC+8)
    出版者: 國立中央大學
    摘要: 面對氣候變遷問題與2050年淨零碳排目標的設立,我國政府積極推動再生能源,其中又以太陽能為重點發展項目。唯太陽能易受氣候環境影響,亦有文獻指出空氣品質惡化為減少太陽能發電的潛在因素之一。空氣汙染物中的
    懸浮微粒帶來的威脅甚廣,不僅對人體健康造成危害,也是造成霧霾的主要成因之一,懸浮微粒會散射和吸收太陽光而減少到達地表之太陽輻射,壓抑太陽能發電能力。本研究目的欲探明懸浮微粒對太陽能發電效率之影響,成為未來民間產業投資及政府能源政策制訂之參考依據。
    本文使用2014年1月1日至2021年9月30日間台灣電力公司所營運的13座太陽能電廠發電量資料及鄰近電廠之局署氣象站、空氣品質測站數據,分析空氣汙染中細微懸浮微粒(PM2.5)及懸浮微粒(PM10)影響太陽能電廠容量因數之幅度,藉以探究空氣汙染對太陽能發電效率之實質影響。本文使用固定效果模型,並將PM2.5及PM10與太陽能發電效率之間存在互為因果而產生的內生性問題納入考量,以北風做為工具變數,利用兩階段最小平方法處理模型內生性問題。
    實證結果發現,PM2.5小時平均濃度每增加1 μg/m3容量因數會減少0.728%;PM10小時平均濃度每增加1 μg/m3,容量因數會減少0.293%,顯示空氣品質惡化會顯著降低太陽能發電效率。本文亦發現隨空氣汙染增加而降低太陽能發電效率之效果集中於空氣品質較不佳之區間,且透過加入PM2.5及PM10平方項,得知發電效率之損耗隨PM2.5及PM10濃度數值的增加而下降,顯示空氣汙染對太陽能發電效率可能存在非線性之影響。總的來說,政府在規劃再生能源政策時應考慮懸浮微粒對太陽光電的負面影響,並於光電場選址時多加考量。
    ;Facing climate change issues and setting the goal of net-zero carbon emission by 2050, the government of Taiwan has been actively pursuing renewable energy development, with a focus on solar photovoltaics. However, solar photovoltaics is susceptible to climate and environmental changes, and the literature suggests that the deterioration of air quality could be a potential factor for reducing the efficiency of solar power generation. Particulate matters pose a wide range of threats not only to human health but also to the creation of haze. Particulate matters will scatter and absorb sunlight to reduce the amount of solar radiation reaching the earth’s surface that suppress the ability to generate electricity from solar power. The purpose of this research is to investigate the effect of particulate matters on the efficiency of solar power generation, serving as a reference for future investments from the private sector and the setting of energy policies by the government.
    This study adopts fixed effect model to quantify the impact of suspended air particulates, specifically PM2.5 and PM10, on the efficiency of solar power generation, relative to the maximum capacity, using power generation data of 13 solar power plants operated by Taiwan Power Company and data from weather stations and air quality stations located in the vicinity from January 1, 2014, to September 30, 2021. This study takes north wind as the instrumental variable and uses two-stage least square (2SLS) method to address the endogeneity problem between PM2.5/ PM10 and solar power generation efficiency.
    The empirical results show that capacity factor decreases by 0.728% per 1 μg/m3 increase in the hourly average PM2.5 concentration and by 0.293% per 1 μg/m3 increase in the hourly average PM10 concentration, indicating that the deterioration of air quality significantly reduces the efficiency of solar power generation. This study also finds that such negative effect is more concentrated in the range of poor air quality, and the square terms of PM2.5 and PM10 reveal the non-linear effect that further increase in the concentration of PM2.5/PM10 dampens power generation efficiency less substantially. In summary, the government should consider the negative impact of suspended particulate matters on solar photovoltaics when formulating renewable energy policies, and give more consideration to site selection when building photovoltaic power stations.
    显示于类别:[產業經濟研究所] 博碩士論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    index.html0KbHTML116检视/开启


    在NCUIR中所有的数据项都受到原著作权保护.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明