中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/89798
English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 80990/80990 (100%)
造訪人次 : 41659559      線上人數 : 1853
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/89798


    題名: 運用社群媒體發文、留言、轉貼探討COVID-19假新聞辨識之研究;A study on detecting COVID-19 fake news by using posts, comments, reposts on social media
    作者: 林承翰;Lin, Cheng-Han
    貢獻者: 資訊管理學系
    關鍵詞: COVID-19 假新聞辨識;機器學習;文字探勘;COVID-19 fake news detection;machine learning;text mining
    日期: 2022-07-15
    上傳時間: 2022-10-04 12:00:16 (UTC+8)
    出版者: 國立中央大學
    摘要: 隨著 COVID-19 疫情爆發以來,很多國家為了防止疫情擴散進行封城管制。 人們待在家裡減少不必要的外出,來避免染疫的風險,原本實體的社交活動改成 在線上社群媒體上進行,也透過社群媒體來了解與疫情相關的資訊。但是很多的 資訊是未經查證,卻因為社群媒體的特徵被輕易傳播,導致 COVID-19 假新聞在 各大社群平台上蔓延開來。
    目前社群媒體 COVID-19 假新聞辨識研究,大多數學者僅使用社群媒體貼文 的文本內容,來進行 COVID-19 假新聞辨識,較少學者以貼文底下的留言內容, 或者是轉貼貼文內容作為特徵。另外,目前主要訓練 COVID-19 假新聞辨識模型 的語料資料集都是以英文為主的社群平台,如 Twitter,缺乏中文語料資料集。因 此本研究將使用文字探勘技術,提取中國知名社群媒體新浪微博上與疫情相關的 貼文文本特徵,貼文底下留言的內容特徵,與轉貼貼文的內容特徵,並使用貝氏 分類器、邏輯斯迴歸、隨機森林、支援向量機等機器學習方式,以建構 COVID- 19 假新聞辨識模型。最後實驗結果顯示,模型結合貼文內容、留言內容、轉貼內 容等特徵進行訓練,可以達到更好的模型辨識準確率。;With the outbreak of the COVID-19, many countries around the world have gone into lockdown to prevent the spread of the epidemic. People stay at home and reduce unnecessary going out to avoid the risk of infection. The physical social activities were changed to online social media, and information related to the epidemic was also obtained through social media. However, a lot of information was not verified, but was easily spread through the characteristics of social media, leading to COVID-19 fake news spread on major online social platforms.
    At present, most scholars only use the content of social media posts to detect COVID-19 fake news, and few scholars consider the content of social media comments, or the content of social media reposts. Additionally, the corpus mainly used for training COVID-19 fake news detection models are mostly English-based social platforms such as Twitter in most study, there are few corpus used in Chinese languages. Therefore, this study will use text mining technology to extract the content of posts related to the epidemic on Sina Weibo, a well-known social media in China, the content of comments, and the content of reposts, and use machine learning methods like Bayesian classifier, logistic regression, random forest, support vector machine to build COVID-19 fake news detection models. The final experimental results show that the model can achieve better model detection accuracy by combining the content of posts, the content of comments, and the content of reposts.
    顯示於類別:[資訊管理研究所] 博碩士論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML44檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明