本文提出一電壓控制及智慧型參數估測方法操作在定功率區應用於內藏式永磁同步馬達伺服驅動器。在此電壓控制方案,一包含智慧型參數估測之前饋電壓角控制器被提出,採用小波模糊類神經網路線上估測q軸電感。首先,為了最小化銅損,於定功率區,採用上述電壓控制最大化輸出相電壓。接著,提出一適應性步階回歸非線性控制器,其考慮了非零之d軸電流,並藉此提升速度控制之強健性。其中,該控制器透過李亞普諾夫穩定性定理推導適應律,並將其用於線上估測總集不確定項,以確保適應性步階回歸控制器漸進穩定。接著,提出的前饋電壓角控制之方法將用於弱磁控制,其保留了q軸電流控制器以確保穩態響應,並且透過小波模糊類神經網路線上估測q軸電感並將其帶入前饋電壓角控制器以提升動態響應。本文於定轉矩區採用每安培最大轉矩之電流控制方法,除了最大化馬達效率之外,為了提升馬達響應速度、性能,亦提出比例-積分型滑動模式電流控制器以增加電流迴路頻寬。最後,呈現一些實驗結果以驗證提出的電壓控制法則、適應性步階回歸非線性速度控制器及比例積分型滑動模式電流控制器等控制策略之有效性。實驗所使用之硬體為應用德州儀器公司生產之浮點數數位訊號處理器TMS320F28075之內藏式永磁同步馬達伺服驅動系統。;A novel voltage control scheme for an interior permanent magnet synchronous motor (IPMSM) servo drive in the constant power region with intelligent estimation of the motor parameter is proposed in this study. In the novel voltage control scheme, a feedforward voltage angle controller, in which an intelligent parameter estimation method by using a wavelet fuzzy neural network (WFNN) is adopted to estimate the q-axis inductance online, is proposed. In this study, in order to minimize the copper loss, a flux-weakening (FW) control scheme under maximum output voltage is developed first. Then, an adaptive backstepping based nonlinear controller (ABNC) considering nonzero d-axis current is developed to improve the robustness of the speed control. The Lyapunov stability theorem is used to derive the adaptive law, which is used for the online estimation of the lumped uncertainty to ensure the asymptotical stability of the ABNC. Moreover, a feedforward voltage angle controller is developed for the voltage control where the q-axis current controller is retained in order to ensure the steady-state performance of the control system. Furthermore, the WFNN is adopted to estimate the actual q-axis inductance value online for the feedforward voltage angle controller to improve the dynamic response. In addition, the current control method is adopted in the constant torque region. Besides, for the purpose of maximizing the motor efficiency, the maximum torque per ampere control method is used in the current control mode. In order to improve the performance and dynamic response of current control loop, a PI-type sliding-mode current controller is proposed to increase the current loop bandwidth. Finally, some experimental results are demonstrated to verify the effectiveness of the proposed voltage control scheme with ABNC in the constant power region, and PI-type sliding-mode current controller in the constant torque region. The hardware used in experiment is an IPMSM servo drive system with floating-point digital signal processor(DSP) TMS320F28075 produced by Texas Instruments.