English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 64745/64745 (100%)
造訪人次 : 20508205      線上人數 : 290
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/9190


    題名: 利用進化演算法在多層感知機結構上之判別回授等化器
    作者: 張吉良;Ji-Lian Chang
    貢獻者: 電機工程研究所
    關鍵詞: 類神經網路;符元干擾;等化器;多層感知器;進化演算法;判別回授等化器;交配;突變;Neural Networks;ISI;Equalizer;MLP;EA;DFE;crossover;mutation
    日期: 2001-06-28
    上傳時間: 2009-09-22 11:42:49 (UTC+8)
    出版者: 國立中央大學圖書館
    摘要: 在近幾年來,類神經網路(Neural Networks)十分被重視,它是一個解決非線性問題的有力工具,它被應用在許多方面,而在調適性等化器上面,也得到非常好的效果,在數位通訊系統中,為了消除符元干擾(Inter Symbol Interference, ISI)和Noise,等化器是十分必要的,對於通訊系統而言,訊號間干擾的ISI效應和Noise不僅是造成本身傳送訊號的失真,而且可能還會造成接收端的判別錯誤,使得接收到的訊號發生錯誤,資料不正確,接收端的等化器(Equalizer)可消除ISI效應和Noise,資料的正確率更是靠它才能大大提升,而調適性等化器通常使用參數的學習演算法,傳統的做法是使用最小均方差演算法(Least Mean Square, LMS)。 這篇論文提出一個以新的進化演算法(Evolution Algorithm, EA)應用在多層感知器(Multi-Layer Perceptron, MLP)的後遞式判別式回授化器(Decision Feedback Equalizer, DFE)。是一種利用類神經網路(Neural Networks),模仿生物神經元、生物基因進化遺傳,經由交配(crossover)、突變(mutation)、選擇(selection)、求得好的等化器係數,並且希望由進化演算法中與電腦模擬的結果中,比較出和其他做法的差異和性能。
    顯示於類別:[電機工程研究所] 博碩士論文

    文件中的檔案:

    檔案 大小格式瀏覽次數
    0KbUnknown958檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋  - 隱私權政策聲明