English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 80990/80990 (100%)
造訪人次 : 41842694      線上人數 : 1049
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/9203


    題名: 使用進化演算法的模糊化類神經網路等化器
    作者: 李建民;Chien-Min Lee
    貢獻者: 電機工程研究所
    關鍵詞: 模糊化類神經網路;類神經網路;符元間干擾;進化演算法;neuro-fuzzy network;neural network;ISI;EAs
    日期: 2001-06-28
    上傳時間: 2009-09-22 11:43:04 (UTC+8)
    出版者: 國立中央大學圖書館
    摘要: 傳統上,等化器的設計非常簡單,但通常僅能處理線性判別區域的信號空間。本論文將介紹結合模糊理論與類神經網路架構的等化器,解決等化器無法處理非線性判別區域的的問題。模糊系統的優點是不需要精確的數學模型,另一方面結合人類的知識於系統的設計上。模糊化的好處是可以提供更佳的推廣性、錯誤容忍度、以及更適合應用於真實世界中的非線性系統。而類神經網路的架構,其複雜度可分割非線性判別區域。論文中並提出一種進化演算法則(Evolutionary Algorithms, EAs),應用於模糊化類神經網路等化器上,進化演算法則是一種隨機最佳化(stochastic optimization)的技術,模仿生物遺傳機制的基因進化概念而來,屬於一種多點平行式的全域搜尋(global search)法則。文中將以模擬的方式比較使用進化演算法與傳統演算法,對於模糊化類神經網路等化器效能表現的優劣。
    顯示於類別:[電機工程研究所] 博碩士論文

    文件中的檔案:

    檔案 大小格式瀏覽次數


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明