|
English
|
正體中文
|
简体中文
|
全文筆數/總筆數 : 80990/80990 (100%)
造訪人次 : 42933314
線上人數 : 921
|
|
|
資料載入中.....
|
請使用永久網址來引用或連結此文件:
http://ir.lib.ncu.edu.tw/handle/987654321/92640
|
題名: | 低溫熱管設計及性能研究 |
作者: | 吳昊軒;Wu, Hao-Hsuan |
貢獻者: | 能源工程研究所 |
關鍵詞: | 熱管;冷媒;熱阻;通訊衛星;冷鏈運輸;Heat pipes;Refrigerants;Thermal Resistance;Communication satellites;Cold chain transportation |
日期: | 2023-08-09 |
上傳時間: | 2024-09-19 16:03:46 (UTC+8) |
出版者: | 國立中央大學 |
摘要: | 近年來,隨著通信衛星和冷鏈運輸應用的逐漸普及,低溫熱管的重要性日益凸顯。大多數這些應用的溫度範圍為 -20 ~ -40 oC。然而,在此溫度範圍內進行的研究卻很少。這項研究提供了在接近 -40 oC 的溫度下運行的熱管傳熱性能的實驗測量。採用外徑8mm、10mm、12mm三種不同的燒結銅熱管,工作流體使用冷媒R-32、R-134a以及R-245fa進行測試。 根據實驗結果,冷媒R-32的熱傳性能最佳,其次是冷媒R-134a,而冷媒R-245fa表現最差。可能的原因是,與冷媒R-134a和冷媒R-245fa相比,冷媒R-32具有最好的性質,如飽和蒸汽壓差、液體熱傳導係數和液體傳輸係數。 在冷媒R-245fa及R-134a熱管,管徑12mm熱管的整體熱阻低於管徑10mm熱管,是因為在較大的管徑中,蒸發段和冷凝段的液汽介面熱傳面積上升,液汽介面蒸發冷凝熱阻下降,整體熱管熱阻下降。而在冷媒R-32熱管,因為管徑12mm熱管的蕊材厚度厚於管徑10mm熱管,造成熱管的流體-蕊材結合熱阻上升,熱管蕊材厚度對熱阻的影響較多,使得在不同管徑中冷媒R-32熱管的熱阻表現上,管徑10mm熱管熱阻是低於管徑12mm熱管。 ;Due to the gradually popularized of the communication satellite and cold chain transportation applications, low-temperature heat pipes are increasing it importance drastically in the past years. Most of those applications are in the temperature range of -20 to -40 oC. However, very few researches have been conducted within this temperature range. This study provided an experimental measurement of heat transfer performance of heat pipes operating at temperatures near -40 oC. Using three different sintered copper heat pipes with outside diameters of 8mm, 10mm, and 12 mm and using refrigerant R-32, R-134a, and R-245fa as working fluid were tested. Based on the experimental results, the thermal resistance of refrigerant R-32 is best, followed by refrigerant R-134a, while refrigerant R-245fa performs the worst. The possible reason is that refrigerant R-32 has best property of saturated vapor pressure gradient, liquid thermal conductivity, and liquid transport parameter compared to refrigerant R-134a and refrigerant R-245fa. The overall thermal resistance of the diameter of 12mm heat pipe is lower than that of the diameter of 10mm heat pipe in both refrigerant R-245fa and R-134a heat pipes. The reason is the larger diameter heat pipe, the heat transfer area of the liquid-vapor interface in the evaporating and condensing sections increases, leading to a decrease in the liquid-vapor interface thermal resistance and thus reducing the overall thermal resistance of the heat pipe. However, in the R-32 refrigerant heat pipe, the diameter of 12mm heat pipe has a thicker wick than the diameter of 10mm heat pipe. This results in an increase in the thermal resistance with the fluid-wick interface. The thickness of the wick has a more significant impact on the thermal resistance, causing the diameter of 10mm heat pipe has lower thermal resistance than the diameter of 12mm heat pipe in refrigerant R-32 heat pipes. |
顯示於類別: | [能源工程研究所 ] 博碩士論文
|
文件中的檔案:
檔案 |
描述 |
大小 | 格式 | 瀏覽次數 |
index.html | | 0Kb | HTML | 23 | 檢視/開啟 |
|
在NCUIR中所有的資料項目都受到原著作權保護.
|
::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::