將人群計數與個別位置相結合後,可以進行全面的人群分析,從而更深入地了解人群的結構和行為。現有許多關於人群計數和個體定位的研究工作。但是,它們中的大多數不使用基於點的框架。通過利用基於點的框架,我們提出了一個名為注意力引導人群計數和個體定位(AGCCIL)的系統,旨在預測圖像中的人數並獲取頭部坐標。為了獲得更準確的計數和定位結果AGCCIL 集成 ConvNeXt、Context Extraction Module 和 Attention Guidance Module。此外 ,AGCCIL 還結合了 Depthwise Separable Convolution 以防止過擬合。最後,我們在上海科技大學的數據集上進行了實驗,以評估 AGCCIL 的性能並將其與最先進的工作進行比較。實驗結果表明,AGCCIL 在人群計數和個體定位方面優於最先進的方法,MAE相對於最先進的方法降低了3 % 。;Crowd counting combined with individual locations allows a thorough crowd analysis, which enables a deeper understanding of the structure and behavior of the crowd. There are many existing research works on crowd counting and individual localization. However, most of them do not utilize a point-based framework. By leveraging a point-based framework, we propose a system, called Attention-Guided Crowd Counting and Individual Localization (AGCCIL), that aims to predict the number of people in an image and obtain the coordinates of the heads. To achieve more accurate counting and localization results, AGCCIL integrates ConvNeXt, Context Extraction Module, and Attention Guidance Modules. In addition, AGCCIL incorporates Depthwise Separable Convolution to prevent overfitting. Finally, we conduct experiments on the ShanghaiTech University datasets to evaluate the performance of AGCCIL and compare it with the state-of-the-art work. Experimental results demonstrate that AGCCIL outperforms the state-of-the-art method in crowd counting and individual localization, reducing the MAE of the state-of-the-art method by as much as 3%.