中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/93128
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 80990/80990 (100%)
Visitors : 41649821      Online Users : 1396
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/93128


    Title: 利用ε-greedy強化基於Transformer的物件偵 測演算法之效能;Performance Enhancement for Transformerbased Object Detection by ε-Greedy
    Authors: 翁崇恒;Weng, Chong-Heng
    Contributors: 資訊工程學系
    Keywords: 深度學習;電腦視覺;物件偵測;Deep Learning;Computer Vision;Object Detection;Transformer
    Date: 2023-07-19
    Issue Date: 2024-09-19 16:43:51 (UTC+8)
    Publisher: 國立中央大學
    Abstract: 物件偵測是電腦視覺中,一項重要的基礎研究項目,而近年來,Detection
    Transformer(DETR)類型的模型在這項領域中脫穎而出,最終達到了state-ofthe-art 的效能水準。而這些研究在基礎的DETR 上,提出許多不同的方法,改進了原始DETR 的效能與訓練效率。

    然而,我們發現DETR 類型的模型在top K query selection 的環節,可能會有陷入局部最小值的狀況,造成效能無法最佳化。為了改善這個問題,我們在top K query selection 的環節加入了噪音,鼓勵模型去探索更適合預測物件的query。我們的靈感是來自於強化學習中,有ε-greedy 這樣一種方法用來對動作加入噪音。

    結合這一個加入噪音的方法以及先前的研究,在COCOval2017 上,運用
    ResNet50 的backbone,我們改善了DINO +0.3AP 的效能。這個改善說明了ε-greedy 對於有效減輕陷入局部最小值的負面影響。;Object detection is a fundamental task in computer vision. To accomplish the object detection goal, the Detection Transformer (DETR) model has emerged as a promising approach for achieving state-of-the-art performance. Since its introduction, several variants of DETR have been proposed with the aim of improving its performance and training efficiency.

    However, we find that the DETR-liked model will probably be stuck in a local minimum from top-K query selections, and hence result in inferior performance. To resolve this problem, we add noise to the DETR-liked models with top-K query selections intending to encourage the model to find better queries suitable for bounding box prediction. The rationale is that we are inspired by the ε-greedy idea usually adopted in reinforcement learning which adds noise
    to action selection.

    Combining this noise-adding scheme with those successful endeavors, it can improve DINO by +0.3AP with the 4 multi-scale feature maps setting on COCOval2017 using a ResNet-50 backbone. These improvements validate that the ε-greedy is effective to reduce the negative effect of being stuck in the local minimum.
    Appears in Collections:[資訊工程研究所] 博碩士論文

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML11View/Open


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明