中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/93155
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 80990/80990 (100%)
Visitors : 41649908      Online Users : 1430
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/93155


    Title: 應用混合式前處理與 IPF 過濾器之集成式學習 於軟體缺陷預測;An Application of Hybrid-Sampling and Iterative-Partitioning Filters for Ensemble Learning in Software Defect Predictio
    Authors: 林庭伊;Lin, Ting-Yi
    Contributors: 資訊管理學系
    Keywords: 軟體缺陷預測;混合採樣;集成學習;迭代分層過濾器;欠採樣;過採樣;Software Defect Prediction;Synthetic Sampling;Ensemble Learning;Iterative Partitioning Filter;Under-sampling;Over-sampling
    Date: 2023-07-11
    Issue Date: 2024-09-19 16:44:46 (UTC+8)
    Publisher: 國立中央大學
    Abstract: 隨著軟體規模的增長,測試成本也會越來越高,為避免測試階段造成軟體缺陷的檢
    查遺漏而導致嚴重後果,機器學習開始被使用於軟體缺陷預測(Software Defect
    Prediction ,簡稱 SDP) 並嘗試與現今的自動化測試工具結合,利用機器學習協助且及
    早定位容易出現錯誤的模組,藉此將測試資源集中於特定的專案模組上,讓企業得以利
    用更低成本,產出更高品質的產品。本研究使用 EE-IPF(EasyEnsemble +Iterative Partitioning Filter, IPF 迭代分層過濾器)架構與三種不同過採樣方式結合,分別為
    Polynom-fit-SMOTE 、ProWsyn 、SMOTEIPF 形 成 Hybrid-EE-IPF 架構應用於 SDP 領
    域。希望藉由此方式改善 EasyEnsemble 模型中單一隨機欠採樣上可能造成資訊缺失與
    少類學習特徵不足的問題,且不同於過往 SDP 研 究使用單一 IPF 過濾器過濾雜訊資料
    點,而是將多個過濾器與集成模型結合,以提升各 基底分類的多樣性,進而改善軟體
    缺陷上的預測表現。;As software scales become larger, the cost of testing also increases. To avoid the risk of
    missing software defects during the testing phase and resulting serious consequences, machine
    learning has been applied to software defect prediction (SDP) to assist in early identification of
    defect modules. This enables testing resources to be focused on specific project modules,
    allowing enterprises to produce higher-quality products at lower costs. In this study, the EE IPF (EasyEnsemble + Iterative-Partitioning Filter) architecture is combined with three different
    oversampling methods, namely Polynom-fit-SMOTE, ProWsyn, and SMOTEIPF, to form the
    Hybrid-EE-IPF structure for SDP. This study aims to alleviate the problem of data loss and
    insufficient learning features caused by single random under-sampling in the EasyEnsemble
    model and noisy data points in the SDP dataset. Unlike previous SDP studies that used a single
    IPF filter to filter noisy data points, multiple filters are integrated with the ensemble model to
    improve the diversity of base classifiers and enhance the prediction performance of software
    defects.
    Appears in Collections:[Graduate Institute of Information Management] Electronic Thesis & Dissertation

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML15View/Open


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明