English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 80990/80990 (100%)
造訪人次 : 41635965      線上人數 : 1096
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/93190


    題名: 非監督式異常偵測方法之比較研究— 以經費報銷流程為例;Unsupervised Anomaly Detection in Reimbursement Processes: A Comparative Evaluation of Algorithms
    作者: 孫逸群;SUN, YI-CHUN
    貢獻者: 資訊管理學系
    關鍵詞: 非監督式異常偵測算法;事件紀錄檔;報銷流程;Unsupervised anomaly detection;Event log;Reimbursement process
    日期: 2023-07-18
    上傳時間: 2024-09-19 16:47:10 (UTC+8)
    出版者: 國立中央大學
    摘要: 在現代商業流程中,資訊系統所產生的有價值的事件紀錄檔在各種研究和調查中扮演著關鍵的角色。這些資料在識別異常值、檢測詐騙、以及支持流程改進和風險管理方面都有著至關重要的作用。而在異常偵測的不同類別中,非監督式異常檢測技術因其較少的要求所帶來的高實用性在現實世界應用中顯著出色。過去有關商業流程異常檢測的研究大多主要集中在利用特定的異常偵測技術,較少比較性研究,並通常未使用公共資料集。

    因此,本研究的目標是通過訓練和比較五種較具有代表性的非監督式異常偵測方法所建立之模型效能,為未來研究人員在利用事件紀錄檔進行相關非監督式異常檢測時建立可靠的參考基礎。為了確保結果的可靠性,本研究使用了三個分別記錄了不同的報銷流程的真實世界事件紀錄檔以進行模型訓練並回答研究問題。此外,本研究基於事件紀錄檔常見的三個基本元素(時間、資源、活動),定義了七個異常情境,以便比較不同模型之間的性能表現。通過實驗結果的評估和比較後,我們發現局部異常因子偵測方法( local outlier factor, LOF)是以報銷流程的事件紀錄檔進行異常偵測時,最適用之非監督式異常檢測方法。;Information systems generate valuable log data in modern business processes crucial in various investigations. Anomaly detection using this data is essential for identifying outliers, detecting fraud, and supporting process improvement and risk management. Among the different categories of anomaly detection, unsupervised anomaly detection techniques stand out for their practicality in real-world applications, thanks to their minimal requirements. Previous research on anomaly detection in business processes has predominantly concentrated on
    utilizing specific anomaly detection techniques, which lack comparison between models and are often conducted without employing public datasets. Therefore, this research aims to establish a reliable foundation for future researchers interested in utilizing log data for unsupervised anomaly detection in business processes.

    This is achieved by training and comparing five representative unsupervised anomaly detection algorithms. To ensure the reliability and robustness of the results, three real live event log datasets, capturing distinct reimbursement processes, are utilized to address the research questions. Additionally, seven anomaly scenarios, based on the three essential elements (time, resource, activity) commonly found in event logs, are defined to facilitate the comparison of performance between different models. Through evaluation and comparison, it is revealed that the local outlier factor (LOF) is the most suitable unsupervised algorithm for detecting anomalies in reimbursement process event logs.
    顯示於類別:[資訊管理研究所] 博碩士論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML5檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明