中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/93237
English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 80990/80990 (100%)
造訪人次 : 41663435      線上人數 : 1640
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/93237


    題名: 智慧共同照護之實現: 以資料驅動為基礎之 AI 糖尿病個案管理模式;Smart Shared Care:Data-driven AI-based Diabetes Case Management Model
    作者: 李侑霖;Li, Yu-Lin
    貢獻者: 資訊管理學系
    關鍵詞: 機器學習;深度學習;糖尿病;共同照護;智慧醫療;醫療資訊管理;Machine Learning;Deep Learning;Diabetes Mellitus;Co-Care;Smart Healthcare;Healthcare Information Management
    日期: 2023-07-20
    上傳時間: 2024-09-19 16:50:00 (UTC+8)
    出版者: 國立中央大學
    摘要: 近年生活習慣與飲食型態的改變,糖尿病的患病人口數逐年上升,且糖尿病是 無法治癒的。現今台灣政府積極推廣「糖尿病共同照護網」的積極支援性照護模式, 以往文獻指出共同照護的互相支持確能有效減少糖尿病併發症的發生,雖立意良 好,但目前我國成效不佳。探究原因可能是廣泛性的收案照護,使得照護模式下的 品質不若想像中良好。因此,若以病人為中心做考量,來了解其是否適宜加入共同 照護網,才能真正精準地用有效的資源幫助需要幫助的糖尿病人。
    本研究共設計了三階段的實驗,實驗方法採用機器學習及深度學習中的五種 分類器。第一階段訓練並預測不同糖尿病人血糖控制是否穩定;第二階段訓練並預 測不同糖尿病人是否需接受積極照護;第三階段則是利用前兩階段模型之重要特 徵變數,預測不同糖尿病人是否需加入糖尿病共同照護網。於實驗最後,也會以評 估指標,來評估本研究所產出之模型效能。
    研究結果指出,最佳預測血糖穩定性模型為 RF,準確率達 90%;最佳預測糖 尿病人積極治療必要性模型為 XGBoost,準確率 73%;最佳預測糖尿病人加入糖 尿病共同照護網必要性模型為 Random Forest,準確率 86%。藉由本研究,可讓臨 床端精準地判斷病人加入糖尿病共同照護網的必要性,並針對病人血糖控制穩定 性、藥物或胰島素積極治療必要性提供照護的建議指引,以建構完整的智慧共同照 護模式。;With the change of people′s living and eating habits in recent years, the number of people with diabetes are increasing year by year, and diabetes cannot be cured. Nowadays, Taiwan government is promoting the "Diabetes Shared Care Network", and previous studies have shown that "Diabetes Shared Care Network" can effectively reduce the occurrence of diabetes complications. However, the current effectiveness of this initiative in Taiwan is not satisfactory. The possible reason for this is the broad-based inclusion of patients, which may result in a lower quality of care than anticipated. Therefore, it is essential to consider the patient′s perspective to determine whether they are suitable for inclusion in the "Diabetes Shared Care Network".
    We designed a three-stage experiment. All experiments use five classifiers to construct the predictive models. In the first stage, the models are trained to predict the stability of blood glucose control in different individuals with diabetes. In the second stage, we use machine learning techniques to find out which diabetic patients need curative care. In the last stage, we use the results of the above two experiments to predict who should join the "Diabetes Shared Care Network". At the end of the experiments, the performance of the models developed in this study will be evaluated using various evaluation metrics.
    The research findings indicate that the Random Forest (RF) model achieved the highest accuracy of 90% in predicting blood glucose stability. The XGBoost model was found to be the best in predicting the necessity of curative care for individuals with diabetes, with an accuracy of 73%. Additionally, the Random Forest model performed the best in predicting the necessity of individuals joining the Diabetes Shared Care Network, with an accuracy of 86%. Through this study, we can make precise judgments regarding the necessity of patients joining the "Diabetes Shared Care Network". The findings also provide guidance on blood glucose control stability and the need for medication or insulin therapy, facilitating the development of a comprehensive intelligent shared care model.
    顯示於類別:[資訊管理研究所] 博碩士論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML16檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明