中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/93275
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 80990/80990 (100%)
Visitors : 41652973      Online Users : 1623
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/93275


    Title: MoCab: A Model Management System based on FHIR for Clinical Decision Support
    Authors: 郭哲銘;Kuo, Zhe-Ming
    Contributors: 資訊管理學系
    Keywords: Fast Healthcare Interoperability Resources;臨床決策支援;持續訓練;資訊管理系統;Fast Healthcare Interoperability Resources;Clinical Decision Support;Continuous Training;Information Management System
    Date: 2023-07-25
    Issue Date: 2024-09-19 16:51:40 (UTC+8)
    Publisher: 國立中央大學
    Abstract: 在醫學領域中,有許多的研究人員開發出各種機器學習模型以支援臨床決策。然而, 電子健康記錄(electronic health records, EHR)的格式在不同機構間存在差異,使得將多 個模型整合到醫療資訊系統(hospital information system, HIS)中變得具有挑戰性且耗時。
    為了解決這個問題,我們提出了 MoCab 框架,該框架使用 Fast Healthcare Interoperability Resources (FHIR)作為數據存儲和檢索標準,以將模型部署到多個醫療資 訊系統之中。MoCab 通過標準化的配置設定和導入已保存的模型來部署模型,並基於 FHIR 標準檢索患者數據並將其傳遞給所需的模型來進行預測。基於預測結果,MoCab 透過 Clinical Decision Support (CDS) Hooks 給予醫生警示或通知,並使用基於 SMART on FHIR 架構所開發的應用程式進一步顯示患者的檢驗結果趨勢。此外,MoCab 能夠使 用持續出現的新病患數據不斷訓練與優化模型,以提升已部署模型的預測效能。本文演 示了三種類型的模型如何在 MoCab 中部署以支援臨床決策。我們所提出的 MoCab 框架 可以增強模型在多個醫療資訊系統與電子健康記錄中的可重複利用性,並協助臨床決策 的過程。;Researchers have developed machine learning models to support clinical decision-making in the medical field. However, the format of electronic health records (EHRs) varies across institutions, making integrating these models into a health information system (HIS) challenging and time-consuming.
    To address this issue, we proposed MoCab, which uses fast healthcare interoperability resources (FHIR) as data storage and retrieval standards for deploying models to various HISs. MoCab deploys models by configuring and importing the saved model. MoCab makes the prediction by retrieving patients′ data from the FHIR server and passing it to the requested model. If a warning or alert is needed based on the prediction results, MoCab alerts physicians through Clinical Decision Support (CDS) Hooks and displays patient laboratory result trends using Substitutable Medical Apps Reusable Technologies (SMART) on FHIR. Moreover, MoCab can fine-tune and improve the prediction performance of deployed models over time with the endless stream of new data. Three types of models are presented to demonstrate how the models can be implemented in MoCab to support decision-making. The proposed MoCab framework can enhance the reusability of models in multiple EHRs and assist in the clinical decision-making process.
    Appears in Collections:[Graduate Institute of Information Management] Electronic Thesis & Dissertation

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML40View/Open


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明