中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/93283
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 80990/80990 (100%)
造访人次 : 42588886      在线人数 : 1414
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/93283


    题名: 癲癇偵測演算法應用於癲癇輔助診斷系統;Seizure Detection Algorithm for Auxiliary Epilepsy Diagnosis System
    作者: 黃思齊;Huang, Szu-Chi
    贡献者: 電機工程學系
    关键词: 深度學習;機器學習;腦電圖;癲癇偵測;端對端模型;;Deep learning;machine learning;EEG;seizure detection;end-to-end models;entropy
    日期: 2023-07-18
    上传时间: 2024-09-19 16:52:27 (UTC+8)
    出版者: 國立中央大學
    摘要: 本論文提出基於深度學習的癲癇偵測演算法應用於長時EEG分析,並基於機器學習提出穿戴式癲癇偵測演算法應用於非醫院環境之癲癇偵測。本論文使用CHB-MIT資料集與波恩資料集對演算法效能進行評估,實驗結果顯示本論文深度學習演算法具備最佳的分類效能。本論文深度學習模型在CHB-MIT資料集受試者相依測試平均f1-score為69.34%,跨受試者測試平均f1-score為37.31%。在波恩資料集本論文深度學習模型平均準確度為98.91%,穿戴式演算法平均準確度為97.13%。本論文將穿戴式演算法實現於超低功耗嵌入式系統計算演算法執行時間,實驗結果顯示本論文所提出熵之估算法能夠減少81.58%的計算時間,與近幾年演算法相比本論文穿戴式演算法提供相當的分類效能並具備最少計算時間。;This thesis proposed a deep learning-based seizure detection algorithm for long-term EEG analysis and a machine learning-based wearable seizure detection algorithm for non-hospital seizure detection. We conducted an experiment on the CHB-MIT and Bonn datasets to evaluate the algorithm′s performance. The experimental results show that our deep learning algorithm has the best classification performance. For the CHB-MIT dataset, our deep learning model achieved an average f1-score of 69.34% in the subject dependence experiment and an average f1-score of 37.31% in the cross-subject experiment. In the Bonn dataset, the average accuracy of the deep learning model and the wearable algorithm is 98.91% and 97.13%, respectively. Our wearable algorithm is implemented on the ultra-low power embedded system and analysis the calculation time of the algorithm. The experimental results show that the proposed entropy estimation method can reduce the calculation time by 81.58%. Compared with the previous algorithms, our wearable algorithm provides a comparable classification performance and has the fastest inference speed.
    显示于类别:[電機工程研究所] 博碩士論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    index.html0KbHTML51检视/开启


    在NCUIR中所有的数据项都受到原著作权保护.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明