English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 78818/78818 (100%)
造訪人次 : 34752345      線上人數 : 803
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/93428


    題名: 6 吋晶圓製程整合 奈米光學應用和均勻性分析研究;Research on process integration and uniformity analysis of 6-inch wafers in nano-optical applications
    作者: 黃頤楷;Huang, Yi-Kai
    貢獻者: 光電科學與工程學系
    關鍵詞: I-line 步進微影;光波導;製程整合;波導微諧振器;U型溝槽;6英吋晶圓工藝;I-line stepper lithography;optical waveguide;process integration;waveguide micro-resonator;grooves;6-inch wafer process
    日期: 2024-01-08
    上傳時間: 2024-03-05 17:26:00 (UTC+8)
    出版者: 國立中央大學
    摘要: 隨著通訊領域對於更高傳輸速率的要求日益增加,人們開始尋求比起傳統的銅線傳輸更具優勢的解決方案。在這方面,矽光子學的應用成為了一個受人矚目的選擇。矽光子學利用光波導技術,不僅具有更高的傳輸速率和更寬的頻寬,還能夠降低能量損耗。矽光子系統主要由光子電路和電子電路兩部分組成,以實現信號的傳輸和計算。首先,電訊號經過雷射調製器轉換為光訊號,然後通過光纖和光波導進行傳輸,最後由光接收器將光訊號轉換回電訊號。在光纖通訊中,高功率寬頻的光源,如光學放大器、拉曼雷射等,在通訊、醫學和光譜學等領域扮演著重要的角色。然而,在矽光子領域的多層次整合及低成本大量生產這個議題,是目前較為缺乏的,例如U-Groove(on-chip)結構、Heater(on-chip)結構,目前在製程整合上的研究都還處於雛形階段,更難以實行具有商業經濟效益的量產。在這項研究中,透過在 6 英寸全晶圓上使用經濟高效的 I-line步進微影技術整合波導微諧振器和U-Groove結構作為一個起始研究,未來可進一步使用8吋甚至12吋工藝,並整合更多元件結構。在研究中顯示,已實現低損耗氮化矽(SiN)波導微諧振器的品質(Q)因數高達105,成品之晶片能承受高功率且維持長時間穩定性。此外,波導微諧振器和U-Groove結構還能透過六吋全晶圓製程整合,提供耦合和封裝的長期穩定性解決方案,並在整個
    II
    晶圓內驗證了不同晶片區域的均勻性,顯示了所製造的矽光子裝置的良好品質。本研究顯示,這項光子元件的製程整合,可提供大規模生產、高產量和高均勻性製造的潛力。;With the increasing demand for higher transmission rates in the field of communications, people are searching for solutions that offer more advantages than traditional copper wire transmission. In this context, the application of silicon photonics has become an appealing option. Silicon photonics utilizes optical waveguide technology not only to achieve higher transmission rates and broader bandwidth but also to reduce energy loss. Silicon photonic systems are primarily composed of photonic circuits and electronic circuits to facilitate signal transmission and calculations.
    To begin, the electrical signal is converted into an optical signal through a laser modulator, then transmitted via optical fiber and optical waveguide. Finally, the optical signal is reconverted into an electrical signal by an optical receiver. In optical fiber communications, high-power broadband light sources, such as optical amplifiers and Raman lasers, play pivotal roles in various fields including communications, medicine, and spectroscopy. However, multi-level integration and low-cost mass production in the realm of silicon photonics are currently underdeveloped. Aspects like the U-Groove (on-chip) structure, Heater (on-chip) structure, and ongoing research on process integration are still in their infancy. Furthermore, implementing mass production with commercial economic benefits is even more challenging.
    In this study, we integrated waveguide micro-resonators and U-Groove structures using cost-effective I-line stepper lithography technology on a 6-inch full wafer
    IV
    as an initial exploration. This work can be extended in the future to employ 8-inch or even 12-inch processes and integrate additional component structures. In our research, we achieved a high quality (Q) factor of up to 105 for low-loss silicon nitride (SiN) waveguide micro-resonators. The completed chip can withstand high power and maintain long-term stability. Furthermore, the waveguide micro-resonator and U-Groove structure can be integrated through a six-inch full-wafer process, offering a long-term stability solution for coupling and packaging. This integration also verifies the uniformity of different chip areas across the wafer, ensuring the high quality of the silicon photonic devices manufactured. This process integration of photonic components holds the potential for mass production, high throughput, and uniform manufacturing.
    顯示於類別:[光電科學研究所] 博碩士論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML20檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明