English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 64745/64745 (100%)
造訪人次 : 20508154      線上人數 : 311
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/9380


    題名: 進化演算法結合多層感知機架構運用在4-QAM決策迴授等化器上;4-QAM Decision feedback equalization using Evoluation based multi-layer perceptron structures.
    作者: 黃俊威;Chun-Wei Huang
    貢獻者: 電機工程研究所
    關鍵詞: 進化演算法;Evolutionary Algorithms
    日期: 2002-06-19
    上傳時間: 2009-09-22 11:46:34 (UTC+8)
    出版者: 國立中央大學圖書館
    摘要: 通訊系統在傳送過程中,信號會受到頻寬的限制與雜訊的干擾,而產生失真現象。為了減少信號在有限頻寬通道中,受到雜訊與碼際干擾(Intersymbol Interference,ISI)效應的影響,本論文提出一種適用於進化演算法的應用,將進化演算法結合多層感知機架構,運用在4-QAM(Quadrature amplitude modulated)決策迴授等化器(DFE)上來消除雜訊與碼際干擾。 由於多層感知機(Multi-layer perceptron,MLP)其架構具有非線性之特性,可以設計成為良好的通道等化器。但是多層感知機的誤差曲面包含了釵h零梯度點,所以使用複數倒傳遞演算法(Complex backpropagation algorithm,CBP)來訓練多層感知機,常會面臨到陷入局部最小值(Local minimum),而導致無法將多層感知機訓練到最佳。 進化演算法(Evolutionary algorithms,EAs)為一種非梯度坡降學習演算法(non-gradient decent learning algorithm),其根據達爾文『適者生存』的法則,來獲得最佳化的解。我們利用進化演算法具有非梯度坡降搜尋與多點搜尋的技巧,來避免因為初始值位址不佳而無法獲得全域最小值(Global minimum)。 結果顯示,利用進化演算法運算所得到的誤碼率(bit error rate, BER)表現,比用複數倒傳遞演算法還要好,亦比使用傳統最小均方誤差(Least mean-square)決策迴授等化器有更好的效能。
    顯示於類別:[電機工程研究所] 博碩士論文

    文件中的檔案:

    檔案 大小格式瀏覽次數
    0KbUnknown602檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋  - 隱私權政策聲明