本論文中,我們除了設計一個模糊切換式灰色預測器。我們也結合了模糊控制器和PID控制器,來發展一個動態之控制系統。首先我們提出之預測器改善了傳統灰色預測器之RMS誤差。而灰色預測器根據系統誤差來產生系統預測誤差,且模糊控制器根據系統誤差及誤差變化量來產生一個誤差補償量,最後經由PID控制器來控制受控體。最後由基因演算法來調整上述控制器的所有參數。最後由一些例子可以顯現出我們所提出之方法的優點。 In this thesis, in addition to the design of a fuzzy-switching grey predictor, we integrate a fuzzy controller and a PID controller to develop a dynamic control system The proposed grey predictor improves the RMS error of the traditional grey predictor. The prediction error by the grey predictor and a fuzzy controller is then used to control a PID-controlled. The genetic algorithm is utilized to tune the parameters of the aforementioned controllers. Some illustrative examples are given to show the merits of the proposed method.