本研究主要分成兩個部分進行研究,第一部分為利用陽極氧化鋁奈米模板製備準 直型及分岔型兩種不同型貌之銅金屬奈米線結構,而第二部分為探討所製備出之銅金 屬奈米線結構做為微型散熱元件之散熱性能分析。本研究利用單次及兩次陽極氧化處 理法製備出大面積奈米孔洞且具有不同通道型貌之陽極氧化鋁奈米模板,其中以草酸 電解液進行單次陽極氧化處理可製備出準直型之通道並具有約 51 nm 之孔徑,而以磷 酸及草酸電解液進行兩次陽極氧化處理可製備出不同孔徑大小之分岔型通道,其孔徑 大小分別以磷酸及草酸電解液製備出約 200 nm 及 49 nm 之孔徑。此外,本研究利用 電化學降電壓法成功減薄及移除陽極氧化鋁奈米模板底部之阻障層,進一步結合電化 學沉積法直接於鋁基材上製備出準直型及分岔型銅金屬奈米線,且為了提升微型散熱 元件之散熱能力進一步導入鹼性蝕刻製程技術,蝕刻部分陽極氧化鋁模板並保留金屬 奈米線根部的氧化鋁做為結構保護固定層,以提升散熱元件之比表面積及可撓曲性質。 經由穿透式電子顯微鏡 (TEM) 影像及其相對應之電子選區繞射 (SAED) 鑑定分析 可得知所製備出之大尺寸銅金屬奈米線與小尺寸銅金屬奈米線皆為單晶 FCC 晶體結 構。 在散熱性能分析方面,本研究將上述兩種型貌之銅金屬奈米線結構於自然對流及 強制對流環境下進行熱流計算以分析其降溫效果,再進一步將其結構應用於熱電元件 上分析其提升之輸出性能,根據不同的對流環境對於元件的散熱效果皆有所影響,最 後經由量測後發現蝕刻部分陽極氧化鋁模板的分岔型銅金屬奈米線結構由於其克服 準直型銅金屬奈米線頂部叢聚導致散熱不佳的缺點,具有較佳的降溫效果及優異的熱 電元件輸出電壓。另外,此元件也具備良好的彎曲能力,於曲率半徑 2.5 cm 的操作情 況下具有更優異之比表面積,相對於未彎曲狀態下擁有更加的散熱效果,因此本研究 提出之新穎製程可以達到優化散熱元件性能之目的。;This study consists of two parts. The first part involves creating aligned and branched copper nanowires using anodic aluminum oxide (AAO) templates. The second part analyzes the thermal performance of these nanowires as micro heat sink devices. Large-area AAO templates with different channel morphologies were prepared using one-step and two-step anodization processes. One-step anodization in oxalic acid produced aligned channels with about 51 nm pore size, while two-step anodization in phosphoric and oxalic acids produced branched channels with pore sizes of about 200 nm and 49 nm. The bottom barrier layer of the AAO templates was thinned and removed using electrochemical reduction, allowing direct deposition of copper nanowires onto the aluminum substrate. To enhance heat dissipation, alkaline etching was used to partially etch the AAO template, preserving the aluminum oxide layer at the root of the nanowires for structural support, increasing the specific surface area and flexibility. Thermal performance was evaluated under natural and forced convection. The branched nanowire structure, with partially etched AAO templates, showed better cooling effects and thermoelectric output compared to the aligned structure, which suffered from poor heat dissipation due to clustering. The branched structure also demonstrated excellent bending capability, showing improved specific surface area and heat dissipation under a curvature radius of 2.5 cm. Therefore, the novel process proposed effectively optimizes heat dissipation device performance.