中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/95051
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 80990/80990 (100%)
造访人次 : 41649094      在线人数 : 1398
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/95051


    题名: 由電漿輔助化學氣相沉積法與氯化物前驅物製備之鍺與矽薄膜應用於太陽能電池技術之發展
    作者: 楊友東;You-Dong-Yang
    贡献者: 物理學系
    关键词: 電漿輔助化學氣相沉積;四氯化鍺;四氯化矽;玻璃基板;plasma-enhanced chemical vapor deposition;germanium tetrachloride;silicon tetrachloride;glass substrate
    日期: 2024-06-25
    上传时间: 2024-10-09 15:45:32 (UTC+8)
    出版者: 國立中央大學
    摘要: 這份研究主要是透過電漿輔助化學氣沉積法以及氯化物前驅物;四氯化鍺、四氯化矽,獨立發展製備鍺/矽/玻璃基板材料的堆疊型太陽能電池的前級與後級,並期望在未來發展將兩層薄膜整合的技術。
    選用的玻璃基板材料種類分別有無鹼玻璃、石英玻璃、氧化銦錫層導電玻璃,並各自觀察到在升降溫過程中,薄膜受到應力影響而產生皺摺、龜裂進而導致剝落的形變。從450°C降至室溫的過程中,鍺/石英玻璃會產生龜裂的形變,發生的臨界厚度約為1 μm,而鍺/氧化銦錫層導電玻璃會產生皺摺形變,發生在薄膜較薄(小於200 nm)或鍍膜溫度較低的時候,只有鍺/無鹼玻璃在厚度2 μm內都沒有觀察到任何的形變產生。
    從鍺沉積在三種基板上的XRD圖譜來看,觀察到鍺在(220)晶面有較為強烈的訊號。從拉曼光譜分析,隨著鍺薄膜厚度增加到1μm,薄膜累積的拉伸應變(Tensile strain)會自發性釋放,從295 cm-1回歸到接近300.9 cm-1的位置。
    矽薄膜在三種玻璃上同樣也有應變導致的形變問題,沉積結束後的降溫過程中,矽薄膜/無鹼玻璃會產生皺褶的形變而剝落,發生的臨界厚度約為薄膜厚度小於200 nm的時候,此外,在熱退火時由室溫升溫至450°C,矽薄膜/石英玻璃會產生皺摺形變而剝落,而矽薄膜/氧化銦錫玻璃上至少在1 μm內都沒有觀察到任何的形變產生。
    此外還發展了原味摻雜鎵原子的技術,透過使用三氯化鎵前驅物,在鍺薄膜沉積的同時進行摻雜,量測到最低的電阻率可達0.001Ω·cm。
    本研究中發展在玻璃基板上的薄膜型太陽能電池,還未能夠觀察到可信的轉換效率,僅有接近儀器誤差值的10-6 %。用四點探針量測沉積完尚未佈植的純鍺薄膜的電阻率過低,僅有0.12 Ω·cm,推測在鍍膜過程中有意外的雜質摻入。暫時轉往發展鍺/N型矽基板的太陽能電池時,成功的得到6.2%的轉換效率,短路電流值為54.2 mA/cm2、開路電壓為310 mV,填充因子為38.2%。
    ;This study primarily employs plasma-enhanced chemical vapor deposition (PECVD) and chloride precursors (germanium tetrachloride and silicon tetrachloride) to independently develop the front and rear layers of germanium/silicon/glass-based tandem solar cells. The goal is to integrate these two thin films in the future.

    The types of glass substrates used include alkali-free glass, quartz glass, and indium tin oxide (ITO) conductive glass. During the heating and cooling process, stress-induced wrinkles, cracks, and subsequent peeling deformations were observed in the films. When cooling from 450°C to room temperature, the germanium/quartz glass exhibited cracking deformation at a critical thickness of about 1 μm. The germanium/ITO conductive glass showed wrinkling deformation when the film was thinner (less than 200 nm) or when the deposition temperature was lower. No deformation was observed in the germanium/alkali-free glass for thicknesses up to 2 μm.

    XRD patterns of germanium deposited on the three substrates showed a strong signal on the (220) crystal plane. Raman spectroscopy analysis indicated that as the thickness of the germanium film increased to 1 μm, the accumulated tensile strain in the film spontaneously released, shifting from 295 cm-1 to nearly 300.9 cm-1.

    Silicon films on the three types of glass also exhibited strain-induced deformation issues. During the cooling process after deposition, silicon films on alkali-free glass showed wrinkling deformation and peeling at a critical thickness of less than 200 nm. Additionally, during thermal annealing from room temperature to 450°C, silicon films on quartz glass showed wrinkling deformation and peeling, while no deformation was observed for silicon films on ITO glass up to a thickness of 1 μm.

    Furthermore, a technique for in-situ gallium doping was developed. Using gallium trichloride as a precursor, doping was carried out simultaneously during the deposition of the germanium film, achieving a minimum resistivity of 0.001 Ω·cm.

    In this study, thin-film solar cells developed on glass substrates did not yet show reliable conversion efficiency, only achieving a value close to the instrument′s error margin of 10^-6%. The resistivity of the pure germanium film measured with a four-point probe was as low as 0.12 Ω·cm, suggesting accidental impurity incorporation during the deposition process. Temporarily shifting focus to developing germanium/N-type silicon substrate solar cells resulted in a conversion efficiency of 6.2%, with a short-circuit current density of 54.2 mA/cm², an open-circuit voltage of 310 mV, and a fill factor of 38.2%.
    显示于类别:[物理研究所] 博碩士論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    index.html0KbHTML18检视/开启


    在NCUIR中所有的数据项都受到原著作权保护.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明