中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/95073
English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 80990/80990 (100%)
造訪人次 : 40306009      線上人數 : 235
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/95073


    題名: 二維材料連接模板電化學;2D Materials Junction-Templated Electrochemistry
    作者: 拉達;Raman, Radha
    貢獻者: 物理學系
    關鍵詞: 二維材料;晶界;橫向界面;電化學;析氫反應;2D Materials;Grain Boundaries;Lateral Junctions;Electrochemistry;Hydrogen Evolution Reaction
    日期: 2024-07-10
    上傳時間: 2024-10-09 15:47:03 (UTC+8)
    出版者: 國立中央大學
    摘要: 二維材料(2D)之間的結構形成了一類新型的奈米結構,能在電子結構上實現

    突變,為先進的電化學應用提供了獨特的機會。這些結構中的銳利界面可以創造局部

    電子態和強電場,使其在很多領域都有應用的潛力。

    本論文探討了兩個主要領域:橫向石墨烯p-n 結構在電鍍中的應用以及提高二硫
    化鉬(MoS2)同質結構的光催化活性。

    在第一部分中,橫向石墨烯p-n 結構被用來在電化學過程中實現高空間分辨率和

    動態可控性。通過自下而上的結構形成技術,實現了奈米級精度的奈米顆粒沉積,從

    而創造了複雜的分層材料,如對齊的一維碎形。這些碎形可作為新型的表面增強拉曼

    光譜(SERS)基材。除此之外,通過電沉積連接任意點的一維奈米結構並調整其強度

    和方向,展示了反應範圍的動態可調性,支持類軸突的互聯神經元的生長,用於先進

    的神經形態電路。

    在第二部分,我們探討了MoS2 在催化和可持續能源轉換中的應用,儘管其基面

    在電化學反應中為惰性。我們引入了一種技術: 通過溫和的紫外線照射優先活化其埋藏

    的晶界(GB),顯著增強了GB 的活性,使其達到MoS2 邊緣的催化性能。這一增強通

    過選擇性光沉積和微電化學氫析出反應(HER)測量得到證實。通過光譜分析和第一

    原理模擬計算,我們發現GB 處的替位氧官能化是這種催化增強的原因,此機制能令活

    性提高一個數量級。

    本論文展示了2D 材料結構在奈米技術、能源儲存和可持續能源解決方案中的巨

    大潛力,為高性能光催化劑和先進電化學設備鋪平了道路。;Junctions between two-dimensional (2D) materials form a new class of nanostructures
    that enable abrupt transitions in electronic structure, providing unique opportunities for
    advanced electrochemical applications. These sharp interfaces create localized electronic states
    and strong electric fields, enhancing their functional capabilities.

    This thesis explores two primary areas: the application of lateral graphene p-n junctions
    for electrodeposition and the enhancement of photocatalytic activity in molybdenum disulfide
    (MoS2) homojunctions.

    In the first part, lateral graphene p-n junctions are employed to achieve high spatial
    resolution and dynamic controllability in electrochemical processes. A bottom-up junction
    formation technique enables sub-nanometer precision in nanoparticle deposition, facilitating
    the creation of complex hierarchical materials such as aligned one-dimensional fractals. These
    fractals serve as novel substrates for surface-enhanced Raman spectroscopy (SERS).
    Additionally, dynamic tunability is demonstrated by depositing one-dimensional nanostructures
    that connect arbitrary points with adjustable strength and orientation, supporting axon-like
    growth of interconnected neurons for advanced neuromorphic circuits.

    In the second part, MoS2 is investigated for catalysis and sustainable energy conversion,
    despite the inertness of its basal plane. This study introduces a technique to enhance the catalytic
    activity of continuous MoS2 films by preferentially activating buried grain boundaries (GBs)
    through mild UV irradiation, significantly boosting GB activity to match the catalytic
    performance of MoS2 edges. This enhancement is confirmed through site-selective
    photodeposition and micro-electrochemical hydrogen evolution reaction measurements.
    Spectroscopic analysis and ab-initio simulations reveal that substitutional oxygen functionalization at the GBs drives this catalytic enhancement, increasing activity by an order
    of magnitude.

    This thesis demonstrates the transformative potential of 2D material junctions in
    nanotechnology, energy storage, and sustainable energy solutions, paving the way for high-
    performance photocatalysts and advanced electrochemical devices.
    顯示於類別:[物理研究所] 博碩士論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML13檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明