English  |  正體中文  |  简体中文  |  Items with full text/Total items : 75533/75533 (100%)
Visitors : 27388502      Online Users : 338
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version

    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/9649

    Title: 以調適性類神經網路系統實現預先失真器補償 RF 功率放大器之非線性效應;Compensating the Nonlinear Effect of RF Power Amplifiers with Neural Network based Adaptive Predistortion
    Authors: 吳啟東;Chi-Dong Wu
    Contributors: 電機工程研究所
    Keywords: 類神經網路;功率放大器;預先失真器;Power Amplifiers;Neural Networks;Predistortion
    Date: 2003-06-26
    Issue Date: 2009-09-22 11:52:39 (UTC+8)
    Publisher: 國立中央大學圖書館
    Abstract: 論文提要及內容: 對於高資料傳輸率無線通訊系統而言,在線性調變技術中擁有好的頻譜效率是相當吸引人的。然而,此類系統的浮動波包(fluctuating envelopes) 卻結合了來自高功率RF放大器的非線性現象,以致於造成QAM調變訊號的扭曲效應(warping effect),進而嚴重影響傳輸品質。為了有效消除傳輸端中的warping effect,本論文將使用於基頻操作的data predistorter作為所需的補償器。其中,我們使用多層類神經網路系統來當作predistorter中所使用的nonlinear filter,它將被訓練成為高功率放大器響應的反函數,並且進行基頻資料預先扭曲的非線性補償。為了實現此inverse filter,本論文中使用了多層感知器架構配合複數倒傳遞演算法 (Complex Backpropagation,CBP)類神經網路,並與最小均方演算法(Least Mean Square,LMS)與實數倒傳遞演算法(Real Backpropagation,RBP)類神經網路的效能比較。除了各種演算法的介紹外,為了論文的完整性及一致性,本論文將從基本的類神經網路來開始討論,最後再將電腦模擬的結果附上以說明各種演算法的性能比較。 Abstract of thesis: The good spectral efficiency of linear modulation techniques makes them attractive for use in high date rate digital radio system. Nevertheless, the fluctuating envelopes of such systems combined with the nonlinear nature of the high power RF amplifiers commonly. The warping effect caused by the high power amplifier will seriously degrade the transmission quality of QAM modulated signals. In order to suppress warping effect, one possibility is to use data predistorter operating at baseband as a compensator. In this case, we present a preliminary implementation of a data predistortion system using a multilayer perceptron neural network which forms an adaptive nonlinear filter whose response approximates the inverse function of the HPA nonlinearity. The neural network utilized in this work is a multilayer perceptron using Complex Backpropagation(CBP) algorithm to improve the performance of Least Mean Square(LMS ) algorithm and Real Backpropagation (RBP) algorithm.
    Appears in Collections:[電機工程研究所] 博碩士論文

    Files in This Item:

    File SizeFormat

    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明