English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 78818/78818 (100%)
造訪人次 : 34667850      線上人數 : 1355
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/9963


    題名: 微波存取全球互通頻段鏡像消除低雜訊放大器之研製及平衡式電路量測技術之研究;Study on WiMax Image Rejection Low Noise Amplifier and Related Balanced Circuits Measurement Techniques
    作者: 洪煜凱;Yu-Kai Hung
    貢獻者: 電機工程研究所
    關鍵詞: 鏡像消除式濾波器;鏡像消除式低雜訊放大器;平衡式電路量測技術;balanced circuit measurement techniques;image rejection notch filter;image rejection LNA
    日期: 2006-07-07
    上傳時間: 2009-09-22 12:01:59 (UTC+8)
    出版者: 國立中央大學圖書館
    摘要: 本論文採用台積電0.35微米矽鍺雙載子互補金屬氧化半導體製程,實現微波存取全球互通頻段之平衡式射頻前端電路;論文內容分成平衡式電路量測技術與電路設計兩部分,其中第二章為平衡式電路量測技術之探討,主要介紹混合模態散射參數,並介紹對平衡式電路進行線性度以及雜訊指數之量測。第二部分的射頻前端電路設計以平衡式鏡像消除低雜訊放大器為主要研究內容。 本論文分析了數種鏡像消除式notch濾波器,提出了兩個差動式notch濾波器電路,分別為二階以及三階notch濾波器,經實作驗證後,與理論推測相同。並實作出了單端轉差動式以及全差動式鏡像消除放大器,分別驗證了被動式二階notch濾波器,以及所提出的差動式主動三階notch濾波器的功能。 以下概述各電路之實際量測結果: 第3-2節為單端轉差動式可變增益低雜訊放大器設計,其量測結果在高增益模式下,單端轉差模增益為11.6 dB,輸入1-dB壓縮點為-27.5 dBm,輸入三階截取點為-9 dBm,雜訊指數為4.89 dB,輸出埠功率差為5 dB,鏡像拒斥比為14.9 dB。量測結果在低增益模式下,單端轉差模增益為6.55 dB,輸入1-dB壓縮點為-23.5 dBm,輸入三階截取點為-10 dBm,雜訊指數為7.33 dB,輸出埠功率差為5.8 dB,鏡像拒斥比為11.5 dB。 第3-3節為差動式二階以及差動式三階notch濾波器 。差動式二階notch濾波器,其量測結果為零點可調頻率範圍2.72 GHz ~ 3.4 GHz,最低阻抗可達0.2歐姆。差動式三階notch濾波器,其量測結果為零點可調頻率範圍2.76 GHz ~ 3.4 GHz,最低阻抗可達0.74歐姆。極點可調頻率範圍3.3 GHz ~ 3.94 GHz,最高阻抗可達100歐姆。 第3-4節為差動式可變增益低雜訊放大器,其量測結果,在高增益模式下,差模增益為9.5 dB,輸入1dB壓縮點為-21 dBm,輸入三階截取點為-5 dBm,雜訊指數為8.12 dB,鏡像拒斥比為50.3 dB。在低增益模式下,量測結果為,差模增益為-4 dB,輸入1dB壓縮點為-19 dBm,輸入三階截取點為-3.5 dBm,雜訊指數為20.48 dB,鏡像拒斥比為34.7 dB。 In this thesis, RF front-end circuit for WiMax system is implemented by using tsmc SiGe 0.35?m BiCMOS process. This thesis is divided into two parts which are the study on balanced circuit measurement techniques and RF front-end circuits design. The first part is described in chapter 2, mixed-mode S-parameter, the linearity and noise figure measurement of balanced circuits are introduced. The second part of RF front-end circuit for WiMax system is the main research in this thesis, such as balanced type image rejection low noise amplifier. Several Image Rejection notch filter was analyzed and two differential notch filter using the second order and third order topology were proposed in this thesis. The implantation of the proposed filter shows the same performance with the simulation results. On the other hand, single to differential image-rejection LNA and fully differential image-rejection LNA were also presented. The theory of the passive second order notch filter and proposed differential active third order notch filter is also verified, respectively. Following are the measured results of these designs. Chapter 3-2 is single to differential image-rejection low noise amplifier design .In high gain operating mode, the measurements of single to differential gain is 11.6 dB, input power at the 1-dB gain compression point is -27.5 dBm, input third-order intercept point is -9 dBm., noise figure is 4.89 dB, output port power magnitude difference is 5 dB, image-rejection ratio is 14.9 dB. In low gain operating mode, the measurements of single to differential gain is 6.55 dB, input power at the 1-dB gain compression point is -23.5 dBm, input third-order intercept point is -10 dBm, noise figure is 7.33 dB, output port power magnitude difference is 5.8 dB, image-rejection ratio are 11.5 dB. Chapter 3-3 are the differential second order and third order notch filter design. For differential second order notch filter, the measurement of zero tuning range is from 2.72 GHz to 3.4 GHz., and the minimum impedance can be low as 0.2 Ohm. For differential third order notch filter, the measurement of zero tuning range is from 2.76 GHz to 3.4 GHz, and the minimum impedance could be low as 0.2 Ohm.. The pole tuning range is from 3.3 GHz to 3.94 GHz, and the maximum impedance can be 100 Ohm. Chapter 3-4 is the differential image-rejection low noise amplifier design. In high gain operating mode, the measurements of differential mode gain is 9.5 dB, input power at the 1 dB gain compression point is -21 dBm, input third-order intercept point is -5 dBm., noise figure is 8.12 dB, image-rejection ratio are 50.3 dB. In low gain operating mode, the measurements of differential mode gain is -4 dB, input power at the 1-dB gain compression point is -19 dBm, input third-order intercept point is -3.5 dBm, noise figure is 20.48 dB, image-rejection ratio is 34.7 dB.
    顯示於類別:[電機工程研究所] 博碩士論文

    文件中的檔案:

    檔案 大小格式瀏覽次數


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明