博碩士論文 106426005 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:28 、訪客IP:3.145.172.213
姓名 王淳禾(Chun-He Wang)  查詢紙本館藏   畢業系所 工業管理研究所
論文名稱 TFT-LCD廠之Array製程區的Stacker Crane Cassette 選取與In-Line Stocker 出口點選取探討
相關論文
★ 佈置變更專案工程的執行研究 -以H公司研發單位為例★ MIL-STD-1916、MIL-STD-105E與結合製程能力指標之抽樣檢驗計畫
★ 建構客戶導向的製造品質資訊系統--以某筆記型電腦專業代工廠商為例★ GMP藥廠設施佈置規劃的探討--以E公司為研究對象
★ 應用Fuzzy c-Means演算法之物流中心位址決策模式研究★ 品質資訊系統之規劃與建構 -- 以某光碟製造公司為研究對象
★ 從製程特性的觀點探討生產過程中SPC管制圖監控運用的適切性 -- 以Wafer Level 封裝公司為例★ 六標準差之應用個案研究-以光學薄膜包裝流程改善為例
★ 利用六標準差管理提昇中小企業之製程品質-以錦絲線添加防銹蠟改善為例★ 專業半導體測試廠MES 系統導入狀況、成果及問題之探討-以A 公司為例
★ 以RFID技術為基礎進行安全管理導入-以A公司為例★ 如何提昇產品品質及降低成本—以光碟壓片廠A公司為例
★ ERP導入專案個案分析—以半導體封裝廠A公司為例★ 石英元件製造業之延遲策略應用— 以T公司為研究對象
★ 十二吋晶圓廠自動化搬運系統規劃與導入—以A公司為例★ 半導體封裝產業之生產革新改善活動-A半導體股份有限公司導入經驗探討-
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 近年科技發展與網際網路運用使人們能掌握以往想像不到大量且立即性的資訊,其中科技發展之所以能有如此效果,顯示器技術扮演非常重要的角色,TFT-LCD面板產業也因此而需求量日益增加,並且獲得非常顯著的收益,而為了提升競爭力,業界傾向興建更大之玻璃基板尺寸的面板廠,玻璃基板尺寸成長能使單片基板可切割出的片數增加,面板單位成本下降,產量也因此而上升,但基板的尺寸越大,也相對地影響了製程,而其中也包括物料搬運的部分,本研究即在探討搬運方法對製程之影響。
大部分的TFT-LCD面板廠現今都已將舊的傳統生產系統替換成自動化的電腦整合製造系統,也包含著在其中處理玻璃基板搬運與儲存作業的自動化物料搬運系統(Auto Material Handling System, AMHS),AMHS系統中主要由AGV和RGV和由林坤濱(2008)所提出的內嵌式自動倉儲(In-Line Stocker)的Stacker Crane所組成,因此本研究將會在AMHS的系統環境下對搬運流動規畫進行深入的探討,觀察物料搬運方法與生產流程之間的關係,且期望能對生產效率有正面的影響。
本研究繼承張軒銘(2018)之研究,探討TFT-LCD面板廠中AMHS系統內Array製程兩個決策問題,分別是Stacker Crane之Cassette選取問題、In-Line Stocker之出口點選取問題,由於先前研究提出之多屬性方程式評估方法,在權重設定部分較無根據,因此本篇將對其兩個問題分別提出多個單屬性法則分析權重選擇並對先前模擬環境不嚴謹之處與流程圖進行修正。最後再透過仿真模擬軟體Arena建構修正後的環境,並觀察不同問題間之單屬性法則組合,期望在最佳組合之結果與先前研究能有顯著差異,並能觀察出法則對整個系統派送控制效率之影響。
摘要(英) In recent years, the development of science and technology and the use of the Internet have enabled people to grasp the information that was previously unimagined with a large amount of immediate information. Among them, the development of technology has such a effect, display technology plays a very important role, and the TFT-LCD panel industry also needs The amount is increasing, and it has achieved very significant benefits. In order to enhance competitiveness, the industry is inclined to build a larger glass substrate-sized panel factory. The growth of the glass substrate can increase the number of sheets that can be cut by a single substrate, and the unit cost per panel. As the decline, the output also rises, but the larger the size of the substrate, the relatively affecting the process, which also includes the material handling part, this study is to explore the impact of the handling method on the process.
Most TFT-LCD panel manufacturers have now replaced old traditional production systems with automated computer integrated manufacturing systems, as well as automated material handling systems (AMHS) for handling glass substrate handling and storage operations. The AMHS system consists mainly of AGV and RGV and the Stacker Crane of In-Line Stocker proposed by Lin (2008). Therefore, this study will carry out the flow in the AMHS system environment. The planning is conducted in depth to observe the relationship between the material handling method and the production process, and it is expected to have a positive impact on production efficiency.
This study inherits the research of Zhang (2018) and discusses two decision-making problems of Array process in AMHS system in TFT-LCD panel factory. They are the selection problem of Stacker Crane′s Cassette and the selection of In-Line Stocker′s exit point. The multi-attribute equation evaluation method is relatively unfounded in the weight setting part. Therefore, this paper will propose multiple single attribute rules to analyze the weight selection for the two problems and correct the previous simulation environment imprecision and flow chart. Finally, through the simulation simulation software Arena to construct the modified environment, and observe the single attribute rule combination between different problems, I hope that the results of the best combination can be significantly different from the previous research, and can observe the method affects the efficiency of the entire delivery control system.
關鍵字(中) ★ TFT-LCD
★ AMHS
★ Intra-Bay 搬運
★ Inter-Bay 搬運
★ 單屬性派送
★ 系統模擬
關鍵字(英) ★ TFT-LCD
★ AMHS
★ Intra-Bay handeling
★ Inter-Bay handeling
★ Single Atribute distributing
★ System Simulation
論文目次 摘要 i
Abstract ii
目錄 iii
圖目錄 v
表目錄 vii
第一章 緒論 1
1.1 研究背景與動機 1
1.2 研究目的 2
1.3 研究環境 3
1.4 論文架構 5
第二章 文獻探討 7
2.1 TFT-LCD之結構與製程 8
2.1.1 Array製程 9
2.1.2 Cell製程(面板) 10
2.1.3 Module製程(模組) 11
2.2 無人搬運車派送之相關研究 12
2.2.1 無人搬運車(Automatic Guided Vehicle,AGV)的派送問題 12
2.2.2 有軌制導車輛(Rail Guide Vehicle,RGV)的派送問題 16
2.2.3 具有儲存與搬運功能的S/R Machine相關的派送問題 18
2.3 TFT-LCD廠與半導體晶圓廠AMHS派送控制相關研究 19
第三章 研究方法 25
3.1 研究環境說明 25
3.2 研究方法整理 27
3.3 作業流程符號及變數定義 28
3.4 TFT-LCD系統中ARRAY製程之工作站與無人搬運車作業流程 29
3.4.1 Cassette進入系統之左側工作站流程 29
3.4.2 Cassette進入系統之右側工作站流程 30
3.4.3 左側 RGV 之派送作業流程 31
3.4.4 右側 RGV 之派送作業流程 38
3.4.5 In-Line Stocker之一般加工機台作業流程 43
3.4.6 In-Line Stocker之Stacker Crane作業流程 43
3.4.7 完成品集中工作站之作業流程 53
3.5 評估方式說明 53
3.5.1 Stacker Crane之Cassette單屬性選取法則 54
3.5.2 In-Line Stocker 之出口點單屬性選取法則 57
3.5.3 RGV之Cassette單屬性選取法則 65
第四章 實驗與分析 66
4.1 模擬實驗 66
4.1.1 環境設定 66
4.1.2 模擬系統設定 69
4.1.3 環境假設 69
4.1.4 實驗因子組合 70
4.1.5 績效評估準則 74
4.2 統計分析 75
4.2.1 以產出量(Throughput)為績效評估值 76
4.2.2 以平均流程時間(AFT)為績效評估值 81
4.2.3 以平均延遲時間(ATT)角度為績效評估值 86
4.2.4 以平均提早時間(AET)為績效評估值 91
4.2.5 以平均差異時間(ALT)為績效評估值 96
4.3 實驗結論 102
第五章 結論與後續建議 104
5.1 研究結論 104
5.2 未來研究建議 105
參考文獻 106
中文部分 106
英文部分 106
相關網站 112
參考文獻 中文部分
1. 阮昱瑋(2019)。TFT-LCD廠之Array製程區的RGV派送控制研究。國立中央大學工業管理研究所碩士未發表之論文,桃園縣。
2. 紀碧如(2006)。基因演算法用於增加產能的研究-以TFT-LCD廠Array製程RGV搬送為例。國立交通大學電機資訊學院碩士在職專班碩士論文,新竹市。 取自https://hdl.handle.net/11296/w22y3z
3. 張軒銘(2018)。TFT-LCD廠之自動化搬運系統的多屬性派送控制方法。國立中央大學工業管理研究所碩士論文,桃園縣。 取自https://hdl.handle.net/11296/7t7j5v
4. 楊景如, 沙永傑, & 洪瑞雲(2008)。晶圓廠自動化物料搬運系統之搬運策略模擬研究 (Doctoral dissertation).
5. 劉顥程(2012)。製造系統之無人搬運車的控制問題研究。國立中央大學工業管理研究所碩士論文,桃園縣。 取自https://hdl.handle.net/11296/56cme9
英文部分
1. Atmaca, E., & Ozturk, A. (2013). Defining order picking policy: A storage assignment model and a simulated annealing solution in AS/RS systems. Applied Mathematical Modelling, 37(7), 5069-5079.
2. Ávila, T., Corberán, Á., Plana, I., & Sanchis, J. M. (2015). The stacker crane problem and the directed general routing problem. Networks, 65(1), 43-55.
3. Azimi, P., Haleh, H., & Alidoost, M. (2010). The selection of the best control rule for a multiple-load AGV system using simulation and fuzzy MADM in a flexible manufacturing system. Modelling and Simulation in Engineering, 2010, 7.
4. Bozer, Y. A., & Eamrungroj, C. (2018). Throughput analysis of multi-device trip-based material handling systems operating under the modified-FCFS dispatching rule. International Journal of Production Research, 56(4), 1486-1503.
5. Bozer, Y. A., & Yen, C. K. (1996). Intelligent dispatching rules for trip-based material handling systems. Journal of Manufacturing Systems, 15(4), 226-239.
6. Brezovnik, S., Gotlih, J., Balič, J., Gotlih, K., & Brezočnik, M. (2015). Optimization of an automated storage and retrieval systems by swarm intelligence. Procedia Engineering, 100, 1309-1318.
7. Chang, D. S., & Te Lai, S. (2015). Implementation of cross-generation automation transportation system in the TFT-LCD industry. The International Journal of Advanced Manufacturing Technology, 78(5-8), 753-763.
8. Cho, H. M., & Jeong, I. J. (2017). A two-level method of production planning and scheduling for bi-objective reentrant hybrid flow shops. Computers & Industrial Engineering, 106, 174-181.
9. Confessore, G., Fabiano, M., & Liotta, G. (2013). A network flow based heuristic approach for optimising AGV movements. Journal of Intelligent Manufacturing, 24(2), 405-419.
10. Cong, P. A. N., Zhang, J., & Wei, Q. I. N. (2017). Real-time OHT Dispatching Mechanism for the Interbay Automated Material Handling System with Shortcuts and Bypasses. Chinese Journal of Mechanical Engineering, 30(3), 663-675.
11. Egbelu, P. J., & Tanchoco, J. M. (1984). Characterization of automatic guided vehicle dispatching rules. The International Journal of Production Research, 22(3), 359-374.
12. Gola, A., & Kłosowski, G. (2019). Development of computer-controlled material handling model by means of fuzzy logic and genetic algorithms. Neurocomputing.
13. Ho, Y. C., & Liu, H. C. (2006). A simulation study on the performance of pickup-dispatching rules for multiple-load AGVs. Computers & industrial engineering, 51(3), 445-463.
14. Ho, Y. C., Lin, J. W., Liu, H. C., & Yih, Y. (2016). A study on the lot production management in a thin-film-transistor liquid-crystal display fab. Journal of Manufacturing Systems, 40, 9-25.
15. Hu, W., & Mao, J. (2012, December). Online dispatching of rail-guided vehicles in an automated air cargo terminal. In 2012 IEEE International Conference on Industrial Engineering and Engineering Management (pp. 1344-1348). IEEE.
16. Hu, W., Mao, J., & Wei, K. (2013, August). Energy-efficient dispatching solution in an automated air cargo terminal. In 2013 IEEE International Conference on Automation Science and Engineering (CASE) (pp. 144-149). IEEE.
17. Huang, Y. S., & Chen, H. W. (2018). A mixed dispatching rule for semiconductor wafer fabrication. International Journal of Systems Science: Operations & Logistics, 5(3), 195-203.
18. Hwang, S., Hong, S. P., & Jang, Y. J. (2018, August). Dynamic scheduling of the dual stocker system using reinforcement learning. In IFIP International Conference on Advances in Production Management Systems (pp. 482-489). Springer, Cham.
19. Jang, Y. J., Choi, G. H., & Kim, S. I. (2005, September). Modeling and analysis of stocker system in semiconductor and LCD fab. In ISSM 2005, IEEE International Symposium on Semiconductor Manufacturing, 2005. (pp. 273-276). IEEE.
20. Jin, M., & Wang, Y. (2017). Task Scheduling for Autonomous Shuttle and Stacker Crane Warehousing Systems. In IIE Annual Conference. Proceedings (pp. 970-975). Institute of Industrial and Systems Engineers (IISE).
21. Koo, P. H., Park, M. J., & Koh, S. G. (2016). Simulation analysis of operational control decisions in semiconductor wafer fabrication. In Proc. ICAOR (p. 102).
22. Kung, Y., Kobayashi, Y., Higashi, T., Sugi, M., & Ota, J. (2014). Order scheduling of multiple stacker cranes on common rails in an automated storage/retrieval system. International Journal of Production Research, 52(4), 1171-1187.
23. Lee, J. (1999). Dispatching rail-guided vehicles and scheduling jobs in a flexible manufacturing system. International journal of production research, 37(1), 111-123.
24. Lee, J., & Srisawat, T. (2006). Effect of manufacturing system constructs on pick-up and drop-off strategies of multiple-load AGVs. International journal of production research, 44(4), 653-673.
25. Li, Y., Jiang, Z., & Jia, W. (2014). An integrated release and dispatch policy for semiconductor wafer fabrication. International Journal of Production Research, 52(8), 2275-2292.
26. Lin, J. T., & Huang, C. J. (2014). A simulation-based optimization approach for a semiconductor photobay with automated material handling system. Simulation Modelling Practice and Theory, 46, 76-100.
27. Lin, J. T., Wang, F. K., & Chang, Y. M. (2006). A hybrid push/pull-dispatching rule for a photobay in a 300 mm wafer fab. Robotics and Computer-Integrated Manufacturing, 22(1), 47-55.
28. Lin, Y. H., Chiu, C. C., & Tsai, C. H. (2008). The study of applying ANP model to assess dispatching rules for wafer fabrication. Expert Systems with Applications, 34(3), 2148-2163.
29. Liu, H. C., & Yih, Y. (2013). A fuzzy-based approach to the liquid crystal injection scheduling problem in a TFT-LCD fab. International Journal of Production Research, 51(20), 6163-6181.
30. Luo, S. (2019, February). RGV optimal scheduling scheme selection in multi-process scenario. In AIP Conference Proceedings (Vol. 2073, No. 1, p. 020092). AIP Publishing.
31. Min, H. S., & Yih, Y. (2003). Selection of dispatching rules on multiple dispatching decision points in real-time scheduling of a semiconductor wafer fabrication system. International Journal of Production Research, 41(16), 3921-3941.
32. Mohamad, N. R., Fauadi, M. H. F. M., Zainudin, S. F., Noor, A. Z. M., Jafar, F. A., & Ali, M. M. (2018). Optimization of Material Transportation Assignment for Automated Guided Vehicle (AGV) System. International Journal of Engineering & Technology, 7(3.20), 334-338.
33. Morandin, O., Carida, V. F., Kato, E. R. R., & Fonseca, M. A. S. (2011, May). A hierarchical fuzzy rule-based building model applied to a AGV dispatching system in an FMS. In 2011 IEEE International Conference on Robotics and Automation (pp. 3764-3769). IEEE.
34. Muhamad, M. R., Fauadi, M. H. F. B. M., Jafar, F. A., Noor, A. Z. M., & Nordin, M. H. (2018). Simulation-Based Multi-Objective Optimization for Distributed Material Transportation System. International Journal of Engineering and Technology 7(3.20):92-94
35. Nishi, T., & Tanaka, Y. (2012). Petri net decomposition approach for dispatching and conflict-free routing of bidirectional automated guided vehicle systems. IEEE Transactions on Systems, Man, and Cybernetics-Part A: Systems and Humans, 42(5), 1230-1243.
36. Qin, W., Zhang, J., & Sun, Y. (2013). Multiple-objective scheduling for interbay AMHS by using genetic-programming-based composite dispatching rules generator. Computers in Industry, 64(6), 694-707.
37. Rams, H., Schöberl, M., & Schlacher, K. (2018). Optimal Motion Planning and Energy-Based Control of a Single Mast Stacker Crane. IEEE Transactions on Control Systems Technology, 26(4), 1449-1457.
38. Salah, B., Janeh, O., Noche, B., Bruckmann, T., & Darmoul, S. (2017). Design and simulation based validation of the control architecture of a stacker crane based on an innovative wire-driven robot. Robotics and Computer-Integrated Manufacturing, 44, 117-128.
39. Sarin, S. C., Varadarajan, A., & Wang, L. (2011). A survey of dispatching rules for operational control in wafer fabrication. Production Planning and Control, 22(1), 4-24.
40. Shimizu, T., Suzuki, K., Naito, S., & Ito, S. (2009, August). Two-degree-of-freedom control of a stacker crane. In 2009 ICCAS-SICE (pp. 2480-2484). IEEE.
41. Singh, N., Dave, V., Kota, J., Singh, S. K., Sakrikar, R., & Sarngadharan, P. V. (2019). Modular Mission Control for Automated Material Handling System and Performance Analysis—A Case Study. In Machines, Mechanism and Robotics (pp. 329-340). Springer, Singapore.
42. Staudecker, M., Schlacher, K., & Hansl, R. (2008). Passivity based control and time optimal trajectory planning of a single mast stacker crane. IFAC Proceedings Volumes, 41(2), 875-880.
43. Su, T. S., & Hwang, M. H. (2017). Efficient machine layout design method with a fuzzy set theory within a bay in a TFT-LCD plant. Procedia Manufacturing, 11, 1863-1870.
44. Tseng, S. S., Chang, F. M., Chu, Y. S., & Chi, P. J. (2011). A GA-based method to reduce material handling: the case of TFT-LCD array Fabs in Taiwan. International Journal of Production Research, 49(22), 6691-6711.
45. Udhayakumar, P., & Kumanan, S. (2010). Task scheduling of AGV in FMS using non-traditional optimization techniques. International Journal of Simulation Modelling, 9(1), 28-39.
46. Wang, C. N., Lee, Y. H., Hsu, H. P., & Nguyen, D. H. (2016). The heuristic preemptive dispatching method for convey-based automated material handling system of 450 mm wafer fabrication. Computers & Industrial Engineering, 96, 52-60..
47. Wang, C. N., Wang, J. W., Chou, M. T., Liao, R. Y., & Huang, C. J. (2017). A dispatching method for the lots of different priorities in 450-mm semiconductor manufacturing. Advances in Mechanical Engineering, 9(7), 1687814017713945.
48. Wang, C., Fang, W., & Guan, Z. (2018). Simulation based Design for Materials Delivery System of Engineering Machinery Assembly Line. In 2018 7th International Conference on Sustainable Energy and Environment Engineering (ICSEEE 2018). Atlantis Press.
49. Wang, X., & Lu, J. (2010, November). Research on Control Method of Neural Network for Stacker Crane. In 2010 International Conference on E-Product E-Service and E-Entertainment (pp. 1-4). IEEE.
50. Wu, C. Q., Luo, J., Tang, H. G., Li, B., & Pan, Y. H. (2009, July). Cycle-deadlock control of RGV system via Petri net. In 2009 4th International Conference on Computer Science & Education (pp. 523-528). IEEE.
51. Wu, L. H., Mok, P. Y., & Zhang, J. (2011). An adaptive multi-parameter based dispatching strategy for single-loop interbay material handling systems. Computers in Industry, 62(2), 175-186.
52. Wu, L., Zhang, G., Sun, Y., & Zhang, J. (2010, October). A fuzzy logic-based and hybrid dispatching policy for interbay material handling system in 300mm semiconductor manufacturing system. In 2010 8th International Conference on Supply Chain Management and Information (pp. 1-6). IEEE.
53. Yang, T., Kuo, Y., Hsieh, C. H., & Ge, W. C. (2016). An exploratory study of virtual cell design for thin-film transistor–liquid crystal display (TFT-LCD) array manufacturing. The International Journal of Advanced Manufacturing Technology, 83(1-4), 633-644.
54. Yangl, Z., Li, C., & Zhao, Q. (2018, July). Dynamic Time Estimation Based AGV Dispatching Algorithm in Automated Container Terminal. In 2018 37th Chinese Control Conference (CCC) (pp. 7868-7873). IEEE.
55. Yao, S., Jiang, Z., Li, N., Geng, N., & Liu, X. (2011). A decentralised multi-objective scheduling methodology for semiconductor manufacturing. International Journal of Production Research, 49(24), 7227-7252.
56. Zhang, H., Jiang, Z., & Guo, C. (2009). Simulation-based optimization of dispatching rules for semiconductor wafer fabrication system scheduling by the response surface methodology. The International Journal of Advanced Manufacturing Technology, 41(1-2), 110-121.
57. Zhou, Q., & Zhou, B. H. (2016). A deadlock recovery strategy for unified automated material handling systems in 300 mm wafer fabrications. Computers in Industry, 75, 1-12.
指導教授 何應欽(Ying-Chin Ho) 審核日期 2020-1-15
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明