English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 80990/80990 (100%)
造訪人次 : 41269571      線上人數 : 187
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/82976


    題名: 3D 鋪面調查車之驗證與國道應用分析;Verification of 3D Pavement Survey Vehicle and Utilization in Taiwan Freeway
    作者: 胡閔硯;Hu, Min-Yan
    貢獻者: 土木工程學系
    關鍵詞: 鋪面調查車;儀器驗證;鋪面調查;Pavement condition survey vehicle;Verification;Pavement survey
    日期: 2020-06-29
    上傳時間: 2020-09-02 14:19:02 (UTC+8)
    出版者: 國立中央大學
    摘要: 近年國外鋪面狀況評估指標逐漸精簡以裂縫率與車轍深度計算為主,並積極發展車載式鋪面調查儀器取代人工量測,藉由鋪面調查儀器減少人為因素判斷差異、有效提升鋪面調查效率與保障調查人員之安全。本研究以國立中央大學與日本研究團隊技術合作之3D鋪面調查車進行各規範驗證,其中包含裂縫影像辨識、車轍量測及距離驗證,結果皆符合日本道路協會鋪面調查試驗法便覽S029、S030及AASHTO R86-18之規範要求。完成3D鋪面調查車驗證後,調查國道一號南下374.3車道公里之鋪面狀況,調查項目包含裂縫率與車轍深度,為考量各工務段轄區、地緣狀況等因素進行分區與分段探討,透過集群分析針對劣化較嚴重區域與交通量及衝擊勁度模數(Impulse Stiffness Modulus, ISM)進行相關性分析,調查結果綜合裂縫與車轍進行集群分群分析後發現,鋪面劣化較為嚴重之區域為147筆裂縫與車轍複合產生之路段,透過相關性分析以裂縫率分群為重級路段與路段平均交通量呈高度線性相關r = 0.7;以國道鋪面系統中ISM與裂縫率及車轍進行相關性分析,全路段或集群分析後之重級路段皆與ISM成低度線性相關;最終以連續破壞路段分布探討交通部高速公路局維修區間。基於研究成果顯示,3D鋪面調查車儀器驗證符合美、日規範要求並能反應國道真實鋪面情況;鋪面劣化嚴重路段與工業區具地緣關係,因重車反覆加載致疲勞裂縫產生;鋪面破壞應侷限面層而不觸及結構問題;交通部高速公路局以500m以上做為維修區間可考慮多數鋪面劣化嚴重路段。;Nowadays countries around the world gradually simplified and mostly use crack rate and rutting depth as index to evaluate the pavement condition. Moreover, they proactively to use the instrument measurement to replace the manual measurement. By using the instrument it can reduce the error in manual subjective judgment and can also effectively increase the safety of person who are investigating the pavement. The Pavement 3D investigating vehicle used in this research is collaborated with National Central University and Japan research team to process the verification of specifications which including crack image recognition, rutting measure and distance verification. The result all meets Japanese Road Association Pavement survey test method “日本道路協會鋪面調查試驗法便覽” S029, S030 and AASHTO R88-18 ‘s requirements. After finishing the pavement 3D Investigate vehicle verification we investigate the National Highway No. 1 southbound for totally 374.3 km. The investigation project include the crack rate and rutting depth. Since each highway sections are greatly different in admiration and position between each other, the will be separated in the following analysis. We use k-means clustering to analyze the deteriorated areas, traffic and ISM (Impulse Stiffness Modulus, ISM). These three factors then being analyzed by correlation. The result shows that if we use crack and rutting to do cluster analyze, we will find that there are 147 data that are in serious deterioration area. In addition, via correlation analyze we find crack rate cluster shows heavy deteriorated section and average traffic has highly linearly correlated (r=0.7). Moreover, if we use National Road Pavement System’s ISM data, crack rate and rutting depth for correlation analysis. It shows that every section shows low linear correlation. Finally, we use Continuous damage section position to discuss the maintenance section for the Highway Bureau. The result shows that the 3D pavement investigating vehicle verify Japan and America’s regulation and can follow our request to show the real pavement condition in the state road. Pavement deterioration serious section has Geographical relationship with industrial area. Because of the heavy vehicle continuously pass through cause the tired crack and the pavement damage doesn’t affect the structure problem . So we suggest Highway Bureau to use more than 500m as maintenance section and consider to use in the most pavement serious deterioration section.
    顯示於類別:[土木工程研究所] 博碩士論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML105檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明