English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 80990/80990 (100%)
造訪人次 : 41268806      線上人數 : 118
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/83060


    題名: A Model for Anisotropic Shear Strength of Rock Joints
    作者: 葛瑞伯;Thapa, Gaurab Singh
    貢獻者: 土木工程學系
    關鍵詞: 異向性剪力強度;粗糙節理;岩石節理;裂隙;直剪試驗;PFC;Anisotropic shear strength;Joint roughness;Rock joint;Fracture;Direct shear test;PFC
    日期: 2020-08-19
    上傳時間: 2020-09-02 14:35:31 (UTC+8)
    出版者: 國立中央大學
    摘要: 本文以法向荷重為定值(CNL)的條件下,研究岩石節理異向性剪力行為。由於Barton剪力強度公式以及 Tse和Cruden的公式皆無法考慮岩石節理異向性剪力強度,因此提出新的公式解決此問題。
    τ=σ_n tan⁡〖[ϕ_b+13.41*Z_2*log10⁡(JCS/σ_n ) ]+C_b* C_AR 〗
    由於粗糙節理在不同方向具有異向性,因此本研究使用 Z_2(一階倒數的均方根)求粗糙節理係數 (JRC) 與最大剪力強度 (τ),粗糙度參數包含剪力方向 (β°),波長 (λ),振幅 (A) 和循環數量 (N), Z_2愈大代表粗糙度愈主導。
    Z_2=√(1/2πN ∫_(x=0)^(x=2πN)▒(dy/dx)^2 )=√((A^2 sin⁡(β) (8Nπ^2 sin⁡(β)+λ sin⁡((8Nπ^2 sin⁡(β))/λ) ))/(Nλ^2 ))/2
      本研究使用三種驗證模式對提出的模型進行適當的論證:(1)透過顆粒流軟體PFC^3D (Particle Flow Code^3D)生成不同振幅 (2mm,3mm,4mm) 與波長 (9mm,12.86mm,18mm和30mm)的正弦曲線的粗糙節理,在不同的剪力方向進行驗證; (2)用PFC^3D模擬不同傾角的三角形節理來驗證此模型; (3)使用Zhang(2019)的實驗數據對提出的模型進行了驗證。
    結果顯示不同的驗證結果皆與此模型高度吻合,由於剪力方向的粗糙度發生變化,岩石節理的剪力強度 (τ) 本質上異向性的。
    ;In this study, an anisotropic shear behavior of rock joints is investigated under constant normal load condition (CNL). Barton’s shear strength formula together with Tse and Cruden’s equation cannot take into account the anisotropic shear strength of rock joints. This study proposed a new equation taking in account anisotropic shear behavior of rocks joints.
    τ=σ_n tan⁡〖[ϕ_b+13.41*Z_2*log10⁡(JCS/σ_n ) ]+C_b* C_AR 〗
    Because of anisotropic characteristics of joint roughness in different direction, roughness parameter Z2 (root mean square of the first derivative) is derived based on sinusoidal profile parameters and is used to find Joint roughness coefficient (JRC) and peak shear strength (τ). The parameters of roughness under consideration are shearing direction (β⁰), Wavelength (λ), Amplitude (A) and Number of cycle (N). A bigger value for this parameter (Z2) means a roughness is more dominant.
    Z_2=√(1/2πN ∫_(x=0)^(x=2πN)▒(dy/dx)^2 )=√((A^2 sin⁡(β) (8Nπ^2 sin⁡(β)+λ sin⁡((8Nπ^2 sin⁡(β))/λ) ))/(Nλ^2 ))/2
    Different modes of validation were used for suitable justification of the proposed models. PFC3D numerical simulation on sinusoidal profile with different amplitudes (2mm, 3mm and 4mm), wavelengths (9mm, 12.86mm, 18mm and 30mm) and normal stresses at different shearing direction (β⁰) is performed for the validation. In addition, the proposed model is validated with PFC3D numerical simulation results of triangular joints profile with different inclination angle. Furthermore, proposed model is also validated with the experimental data of Zhang, 2019. Except few combinations, good agreement is found between the results from proposed model and results from different modes of validation. It is found that shear strength of rock joint is anisotropic in nature due to roughness variation in shearing direction.
    顯示於類別:[土木工程研究所] 博碩士論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML134檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明