中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/84231
English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 80990/80990 (100%)
造訪人次 : 41265910      線上人數 : 883
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/84231


    題名: 透過物聯網和Zenbo機器人實作智慧翻轉教室並探討其對學生互動和感知影響之研究;A study of implementing smart flipped classroom with internet of things, Zenbo robot and investigating its influence on students′ interaction and perception
    作者: 皮亞克;pahamak, pitchayakit
    貢獻者: 網路學習科技研究所
    關鍵詞: 翻轉教室;相互式教學;Zenbo機器人;物聯網;智慧教室;智慧學習環境;flipped classroom;reciprocal teaching;Zenbo robot;internet of things;smart classroom;smart learning environment
    日期: 2020-07-29
    上傳時間: 2020-09-02 18:31:29 (UTC+8)
    出版者: 國立中央大學
    摘要: 近年來,許多研究機構都認同物聯網和機器人在國家、社會和個人生活,特別是在教育方面的重要性。物聯網和機器人是智慧教室的必要條件,它們能創造最佳的學習環境。因此,本研究旨在將物聯網和機器人 (即Zenbo)應用到翻轉教室中。並在高互動多媒體課程中實現以學習者為中心的學習環境。此外,本研究的翻轉教室配合相互教學,包括總結、提問、澄清、預測 (SQCP)。我們為Zenbo機器人開發了一套智慧學習系統,包括谷歌教室、Zenbo應用程式、教室控制、QR簽到、人臉辨識簽到,應用於臺灣國立中央大學的課程中。
    本研究通過Zenbo機器人和物聯網建構智慧學習環境。並分析了本研究提出之方法的有效性,包括學生對翻轉教室的智慧環境的交互性、有用性、使用意圖和易用性。本研究在兩個學期中進行了兩項實驗,包括前導實驗和正式實驗。在前導實驗中,學生在有Zenbo機器人和物聯網輔助的翻轉教室中學習,而在正式實驗中,學生在有Zenbo機器人和物聯網輔助且有更多智慧的功能、工具和應用的智慧環境中學習。
    實驗結果表明,與前一種方法相比, 結合了Zenbo與更多的功能、工具和應用後,顯著改善了學生的學習環境和教師的教學方式。結果還表明,Zenbo機器人使用起來並不方便;然而,為Zenbo機器人開發的功能、工具和應用程式在翻轉教室中非常有用,學生們有繼續使用Zenbo機器人進行學習的意願。此外,Zenbo機器人還存在一些局限性,缺乏主動的、視覺化的程式設計語言,在嘈雜的環境下幾乎無法進行對話。在此基礎上,本研究提出了為智慧學習教室開發機器人的功能和應用的建議。相信此研究將幫助研究人員開發用在學習環境中的物聯網和機器人。
    ;In recent years, many institutions have announced the significance of IoT and robot development for countries, societies, and individuals in almost all areas of life, especially in education. Applying IoT technology and assistant robots is necessary for a smart classroom to facilitate the best studying environment. Therefore, this study aims to implement IoT and robot techniques, namely Zenbo, to the innovative pedagogy, called a flipped classroom, to perform a learner-centred learning environment in the High Interaction in Multimedia course. Flipped classroom in this study coordinated with reciprocal teaching summarizing, questioning, clarifying, prediction (SQCP). A smart learning system was developed for the Zenbo robot, including google classroom, Zenbo application, classroom control, QR check-in, face recognition check-in, applying on this course at National Central University, Taiwan.
    This study provides essential features for the smart learning environment in the flipped classroom via Zenbo robot and IoT technology. It investigates the effectiveness of the proposed approach, including students′ perception toward interaction, usefulness, intention to use, and easy to use of the smart environment for the flipped classroom. Two experiments, including pilot experiments and regular experiments, were conducted during two semesters. In the first experiment, students learned in the flipped classroom supported by Zenbo robot and IoT, while in the second one, they learned in the smart environment supported by Zenbo robot and IoT with more smart functions, tools, and applications.
    The experiment results indicate that in comparison with the former, the proposed approach with Zenbo integrated with more features, tools, and applications, significantly improved the students′ learning environment, and teachers′ teaching way. The results also show that the Zenbo robot is not easy to use; however, the functions, tools, and applications developed for the Zenbo robot are significantly useful in the flipped classroom, and students intend to use the Zenbo robot next time. Besides, the Zenbo robot has some limitations about lacking active, visual programming language, and low communication ability in noisy places. Based on the identified weaknesses, this research presents recommendations for developing another robot with more capability to make more functions and applications for the smart learning classroom. It is believed that this development would give researchers more perfect results to build IoT and robots in the learning environment.
    顯示於類別:[網路學習科技研究所 ] 博碩士論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML174檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明