本論文主要在研究沉積於P3CT-Na/ITO/glass/基板上的鈣鈦礦合金薄膜吸光層MAxCs1-xPb(Ix Br1-x)3,利用原子力顯微鏡(AFM)、吸收度光譜、X光繞射儀(XRD)圖譜、光激發螢光光譜以及拉曼散射光譜分析鈣鈦礦合金薄膜的表面形貌、結晶性及光激發態特徵。以疏水性的P3CT-Na當作電洞傳輸層,並以MA0.83Cs0.17Pb(I0.83Br0.17)3鈣鈦礦合金薄膜當作吸光層製作而成的太陽能電池具有穩定且高效的光伏特性表現,太陽能電池的高填充因子(FF)使其最高功率轉換效率(PCE)可達15.93 %,並藉由低掠角XRD圖譜、光激發螢光光譜及拉曼散射光譜證實MA0.83Cs0.17Pb(I0.83Br0.17)3鈣鈦礦合金薄膜結構為材料組成分布漸變的薄膜。除此之外,從時間相關之最大功率密度量測以及元件的光伏表現長期量測追蹤下得知,缺陷密度較低的MA0.83Cs0.17Pb(I0.83Br0.17)3鈣鈦礦太陽能電池不僅在短時間量測下具有穩定的最大輸出功率密度,且在160天長期的量測追蹤下,未封裝的元件受環境溫度(22°C)及濕度(30%-40%)影響下,PCE仍保有10.48 %。;In this thesis, the MAxCs1-xPb(IxBr1-x)3 perovskite alloy thin films deposited on top of the P3CT-Na/ITO/glass substrates have been studied. The surface morphologies, crystallinities and excitonic characteristics of MAxCs1-xPb(IxBr1-x)3 thin films were measured by using the atomic-force microscopy (AFM), absorbance spectrophotometry, X-ray diffractometer (XRD), photoluminescence (PL) spectrophotometry and Raman scattering spectrophotometry. The best photovoltaic performance of the P3CT-Na based MAxCs1-xPb(IxBr1-x)3 solar cells can be achieved when the x value is 0.83. The 79.3% high fill factor (FF) can be referred to the highest power conversion efficiency (PCE) of 15.93%. It is confirmed that the MA0.83Cs0.17Pb(I0.83Br0.17)3 alloy thin film is a graded perovskite alloy thin film by using grazing-incident XRD patterns, PL spectra and Raman spectra. Besides, the experimental results show that MA0.83Cs0.17Pb(I0.83Br0.17)3 solar cell with a lower defect density has the more stable and the highest maximum-power density. And, the PCE of the optimal MA0.83Cs0.17Pb(I0.83Br0.17)3 solar cells only decreases to 10.48 % without additional encapsulations after 160 days. It is noted that the solar cells were stored in a dry box under a moderate environment (22°C, 30%-40% relative humidity).