中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/89168
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 80990/80990 (100%)
Visitors : 40258055      Online Users : 178
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/89168


    Title: 利用全因子實驗設計進行三塔十二步驟真空變壓吸附法捕獲燃煤電廠1-kW煙道氣中二氧化碳之最適化研究;Optimal investigation on carbon dioxide capture in 1-kW flue gas from coal-fired power plant by a three-bed twelve-step vacuum pressure swing adsorption using full factorial design
    Authors: 林耀庭;Lin, Yao-Ting
    Contributors: 化學工程與材料工程學系
    Keywords: 變壓吸附;燃煤電廠;二氧化碳捕獲;全因子設計;pressure swing adsorption;coal-fired power plant;carbon dioxide capture;full factorial design
    Date: 2022-09-07
    Issue Date: 2022-10-04 11:00:07 (UTC+8)
    Publisher: 國立中央大學
    Abstract: 面對日益嚴重的溫室效應及嚴峻的氣候變遷,減碳已蔚為國際浪潮。目前捕獲二氧化碳有多種技術。由於變壓吸附法能耗低,資本投資低等優點,因此本研究將使用該技術進行捕獲台中燃煤電廠中煙道氣的二氧化碳之模擬與實驗,並期望能使捕獲的二氧化碳純度達95 %及回收率達65 %。
    本研究首先以高壓氣體吸附分析儀搭配Thermo Cahn D-200 Digital Recording Balance測量二氧化碳及氮氣在吸附劑COSMO 13X沸石之等溫吸附曲線,計算平衡選擇率確認所選用的吸附劑具有良好的分離效果,並以Langmuir-Freundlich isotherm模型對等溫吸附曲線實驗數據進行擬合得到模擬所需之參數。接著以突破曲線及三塔變壓吸附程序之實驗驗證模擬所使用之相關參數是否合理,經過試誤法(trial-and-error)得出當等溫吸附擬合曲線之修正因子為0.55時,能使模擬與實驗結果接近。
    接著利用三塔十二步驟變壓吸附程序模擬兩水準六因子之全因子實驗設計,先初步找出其中三個影響較為顯著之因子,再至台中電廠進行兩水準三因子的全因子實驗設計以探討因子對於塔底二氧化碳之純度、回收率、捕獲能耗及產率之影響,並建立各響應之迴歸模型找出最適化操作條件。最後得到當實驗步驟3/7/11時間為200秒,進料壓力3.5 bar,同向減壓壓力為0.30 bar時,可以得到捕獲二氧化碳純度97.50 %、回收率68.54 %、能耗1.43 GJ/tonne of CO2及產率0.42 kg CO2/kg adsorbent∙day之最適化結果。
    ;With the concern over global warming and extreme climate change, carbon reduction has become a global trend in recent years. When it comes to carbon capture, there are several methods to deal with this. This research was concerned about carrying out pressure swing adsorption(PSA) simulation and experiments to capture carbon dioxide because of its low energy consumption and low capital investment, and aimed to capture carbon dioxide from 1-kW flue gas in Taichung coal-fired power plant with CO2 product purity reaching 95 %, and recovery reaching 65 % at the same time.
    First of all, the adsorption isotherm curves of carbon dioxide and nitrogen for zeolite 13X molecule sieve were obtained by High Pressure Gas Adsorption Analyzer and Thermo Cahn D-200 Digital Recording Balance, and the equilibrium selectivity was calculated to confirm whether adsorbent has good ability to separate carbon dioxide and nitrogen.
    Langmuir-Freundlich isotherm model was used to fit the adsorption experimental data in order to obtain the isotherm parameters for simulation. Furthermore, breakthrough curve and the three-bed PSA experiment were used for simulation verification. Through trial-and-error method, it was found that when the correction factor of adsorption isotherm equals to 0.55, the results of simulation and experiments can agree well.
    Next, two-level six-factor full factorial design with three-bed twelve-step PSA process simulation was conducted for the sake of finding three relatively significant factors, and two-level three-factor full factorial design experiments were conducted in Taichung coal-fired power plant afterwards. Finally, the optimal operating conditions were predicted from regression model of design of experiments(DOE). After experiments at optimal operating conditions, the bottom CO2 product purity is 97.50 % with recovery 68.54 %, and energy consumption and productivity were measured to be 1.43 GJ/tonne of CO2 and 0.42 kg CO2/kg adsorbent∙day when step 3/7/11 time equaled to 200 s, adsorption pressure equaled to 3.5 bar and cocurrent depressurization pressure equaled to 0.30 bar.
    Appears in Collections:[National Central University Department of Chemical & Materials Engineering] Electronic Thesis & Dissertation

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML50View/Open


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明