摘要: | 端羥基聚丁二烯(hydroxyl-terminated polybutadiene, HTPB)為一種遙爪聚合物,分子結構是由末端氫氧基,中間為不同形式的丁二烯單元所組成。HTPB具有多功能特性,常用於黏合劑、燃料和塗料等不同領域中。然而,目前國內大多數的HTPB皆仰賴國外進口,這可能會帶來一些不便,如國內外法規、原料品質不穩定和物價波動等。因此,我們希望未來能夠自主生產合格的HTPB,以降低對外部的依賴。 本研究之目的為使用Aspen Plus建立連續式製成HTPB的方法。進料方面設計兩條管線,通過改變壓力與溫度,以確保原料以液體型態進入反應器,可減少安全隱患。反應方面採用可控性高、反應機制單純的自由基聚合(free radical polymerization, FRP),並利用真實實驗數據,計算3/8吋管塞流式反應器(3/8’’plug flow reactor, 3/8’’PFR)和微通道反應器(Microchannal reactor, MCR)的動力學參數。此外,使用Aspen Plus中內建分析工具,透過改變進料比例、反應時間、反應溫度等參數,調節HTPB的規格。在分離方面,我們使用分離器與蒸餾塔將HTPB、丁二稀和異丙醇純化,並將純化後的丁二烯與異丙醇進行循環再利用。 這項研究已成功建立了Aspen Plus快速計算動力參數之方法,並且模擬結果與真實實驗數據相當吻合,這表明在流程設計與參數計算上具有相當高的參考性。此外,我們在保持原料完全於液相的條件下,找到合適的反應參數,使轉化率達到40%,並且數均分子量保持於3000左右。通過純化後的HTPB、丁二烯與異丙醇,純度皆能達到99%以上。丁二烯與異丙醇回收率可達99%以上,且經回收再利用後,不會造成HTPB之性質改變,有效地避免原料的浪費。
;Hydroxyl-terminated polybutadiene (HTPB) is a telechelic polymer, with a molecular structure composed of terminal hydroxyl groups and various forms of butadiene units in the middle. HTPB possesses multifunctional characteristics and is commonly used in adhesives, fuels, and coatings across various fields. However, most HTPB used domestically is imported, which can lead to certain inconveniences, such as differences in domestic and international regulations, instability in raw material quality, and price fluctuations. Therefore, we aim to independently produce qualified HTPB in the future to reduce our reliance on external sources. The purpose of this study is to establish a continuous process for producing HTPB using Aspen Plus. The feed design includes two pipelines that adjust pressure and temperature to ensure the materials enter the reactor in liquid form, reducing safety hazards. The reaction uses free radical polymerization (FRP), which has high controllability and a simple reaction mechanism. By utilizing actual experimental data, we calculate the kinetic parameters for a 3/8’’ plug flow reactor (3/8’’PFR) and a microchannel reactor (MCR). Additionally, we use built-in analysis tools in Aspen Plus to adjust HTPB specifications by altering parameters such as feed ratio, reaction time, and reaction temperature. In the separation process, we use separator and distillation columns to purify HTPB, butadiene, and isopropanol, and recycle the purified butadiene and isopropanol. This study successfully established a method for quickly calculating kinetic parameters using Aspen Plus. The simulation results closely matched actual experimental data, indicating high reliability in process design and parameter calculations. Furthermore, under conditions that keep the materials entirely in the liquid phase, we found suitable reaction parameters that achieved a conversion rate of 40%, with the number-average molecular weight maintained around 3000. The purified HTPB, butadiene, and isopropanol all achieve a purity of over 99%. The recovery rates of butadiene and isopropanol are also above 99%, and their recycling does not alter the properties of HTPB, effectively preventing material waste. |