當代科學研究領域中,利用先進光學系統對材料進行光學性質 分析,已成為檢測物質內在機制的重要手段。本研究通過結合光致 發光(Photoluminescence, PL)和電致發光(Electroluminescence, EL) 技術激發樣品,配合無焦系統和透鏡組,將樣品的發光特性轉換為 適合電荷耦合元件(Charge Coupled Device, CCD)測量的尺寸及形 式。此方法能夠迅速且精準地獲得光強度角度分佈的實驗數據,與 傳統測量方法相比,大幅提升了實驗效率,同時避免了樣品衰退的 問題。 在光學系統的設計過程中,關鍵步驟包括將樣品產生的光線通 過物鏡在不同角度展開,並利用可調式光圈(IRIS)過濾掉高角度 下的雜訊。系統中的無焦組件作為基礎架設,用於調節匹配光束的 尺寸,最終在 CCD 上形成一個角度對角度的二維光強度分佈圖像, 而樣品的激發方式採用了光致發光(PL)的方式,使系統能夠靈活 適應多種樣品的激發需求。;In the realm of contemporary scientific research, utilizing advanced optical systems for analyzing the optical properties of materials has become a crucial means for probing the intrinsic mechanisms of substances.This study integrates Photoluminescence and Electroluminescence techniques to excite samples, combined with a lens-free system and lens assembly, transforming the sample′s luminescent characteristics into dimensions and forms suitable for measurement by Charge Coupled Devices . This method allows for the rapid and precise acquisition of experimental data on light intensity angle distribution, significantly enhancing experimental efficiency compared to traditional measurement methods, while also preventing sample degradation. During the design process of the optical system, key steps include dispersing the light generated by the sample through an objective lens at various angles, and filtering out noise at high angles using an adjustable iris (IRIS). The lens-free components serve as a fundamental setup to adjust and match the size of the light beam, ultimately forming a twodimensional light intensity distribution image of angle against angle on the CCD. The excitation of the sample is achieved through Photoluminescence,enabling the system to flexibly adapt to the excitation needs of various samples.