English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 80990/80990 (100%)
造訪人次 : 40145709      線上人數 : 289
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/95023


    題名: 高熵氧化物應用於鋰離子電池負極並探討最佳負極/正極配方;High Entropy Oxides for lithium-ion battery Anode and study the best ratio of Anode/Cathode
    作者: 吳奕廷;Wu, Yi-Tin
    貢獻者: 材料科學與工程研究所
    關鍵詞: 鋰離子電池;高熵氧化物;溶膠凝膠自動燃燒法;循環穩定度;負極/正極容量比例
    日期: 2024-07-29
    上傳時間: 2024-10-09 15:44:02 (UTC+8)
    出版者: 國立中央大學
    摘要: 近年來因著科技發展快速,鋰離子電池的普及率也隨之上升。本研究利用溶膠凝膠自動燃燒法合成具有單相岩鹽結構之高熵氧化物(High Entropy Oxides, HEOs),作為鋰離子電池之負極材料,並比較了不同酸鹼值之高熵氧化物的材料特徵及半電池電化學性能。此外,為了解決高熵材料在大電流底下的循環穩定度,本研究在製作高熵氧化物負極電極時,加入了具有鍊狀之導電奈米碳管(Carbon Nanotubes, CNTs),藉此強化電子在負極電極內的傳輸效能,達到改善循環穩定度的目的。但高熵氧化物一直存在著初期不可逆電容的問題,為了解決此問題,在與商用富含鎳之鋰鎳錳鈷氧化物正極(LiNi0.8Mn0.1Co0.1O2)組裝成全電池前,透過使用了負極預鋰化的方式,去除了高熵材料的不可逆電容(包含SEI層的初步生成),避免高熵氧化物負極消耗過多正極的鋰離子,造成全電池電容嚴重衰退之情形發生。此外,為了探討全電池最佳負極/正極電容比例(Anode/Cathode ratio),本研究也利用了COMSOL模擬分析軟體進行高熵氧化物負極和鋰鎳錳鈷氧化物正極半電池平衡電位測試,由分析結果來看,當A/C比取1.1時,出於工作電壓的考量,當整個電池充滿電達到高電壓的狀態時,負極的電池電量狀態(State Of Charge, SOC)會超出鋰離子可以容納的範圍;但當A/C比取1.5時,負極的SOC部分則落在鋰離子可以容納的範圍內,由此可見A/C比取1.5是比較適當的比例參數。;In recent years, the rapid development of technology has led to an increase in the popularity of lithium-ion batteries. This study synthesizes high entropy oxides (HEOs) with a single-phase rock-salt structure using the sol-gel auto combustion method as an anode material for lithium-ion batteries. In this study, we compares the material characteristics and electrochemical performance of half cells with HEOs at different pH values. To address the issue of cycling stability of high entropy materials at high current conditions, conductive carbon nanotubes (CNTs) were added during the preparation of the HEOs anode to provide additional pathways for lithium-ion transport, thereby improving cycling stability.However, HEOs have a persistent problem of initial irreversible capacity. To mitigate this, pre-lithiation of the anode was performed before assembling the full cell with a commercial nickel-rich lithium nickel manganese cobalt oxide cathode (LiNi0.8Mn0.1Co0.1O2). This pre-lithiation process allows for the formation of the solid electrolyte interface (SEI) layer on the surface of the anode, preventing excessive consumption of lithium ions from the cathode and avoiding severe capacity degradation of the full cell. Additionally, to determine the optimal anode/cathode (A/C) ratio for the full cell, COMSOL simulation software was used to analyze the equilibrium potential of half cells with HEOs anodes and lithium nickel manganese cobalt oxide cathodes. The analysis results indicate that when the A/C ratio is set to 1.1, the state of charge (SOC) of the anode exceeds the allowable range when the battery is fully charged to a high voltage. However, when the A/C ratio is increased to 1.5, the SOC of the anode remains within the normal range. Therefore, an A/C ratio of 1.5 is considered the more appropriate parameter.
    顯示於類別:[材料科學與工程研究所 ] 博碩士論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML9檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明